Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định đi hết quãng đường là x(km/h) và thời gian dự định là y (giờ0 với x;y>0
Độ dài quãng đường AB: \(xy\) (km)
Do người đó tăng vận tốc thêm 25km/h thì đến sớm hơn 1 giờ nên:
\(\left(x+25\right)\left(y-1\right)=xy\)
Do người đó giảm vận tốc 20km/h thì đến muộn hơn 2 giờ nên:
\(\left(x-20\right)\left(y+2\right)=xy\)
Ta có hệ: \(\left\{{}\begin{matrix}\left(x+25\right)\left(y-1\right)=xy\\\left(x-20\right)\left(y+2\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+25y=25\\2x-20y=40\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=50\\y=3\end{matrix}\right.\)
Quãng đường: \(50.3=150\left(km\right)\)
gọi thời gian dự định là x(giờ)
vận tốc dự định là y(km/h)(x,y>0)
=>quãng đường AB dài x.y(km)
Nếu vận tốc tăng thêm 20km/h thì đến B sớm hơn 1h so với dự định=>(x-1)(y+20)=xy(1)
nếu vận tốc giảm đi 10km/h thì đến B muộn 1h so với dự định
=>(x+1)(y-10)=xy(2)
từ(1)(2) có hệ \(\left\{{}\begin{matrix}\left(x-1\right)\left(y+20\right)=xy\\\left(x+1\right)\left(y-10\right)=xy\end{matrix}\right.\) giải hệ pt =>\(\left\{{}\begin{matrix}x=3\\y=40\end{matrix}\right.\)(TM)
=>quãng đường AB dài xy=3.40=120km
Gọi x(km/h) là vận tốc dự định của ô tô đi từ A đến B
y(h) là thời gian dự định của ô tô đi từ A đến B
đk: x>10 , y>1
xy(km) là quãng đường từ A đến B
Nếu vận tốc tăng 20 km/h thì thời gian giảm 1h nên ta có phương trình:
xy=(x+20)(y-1) (1)
Nếu vận tốc giảm 10km/h thì thời gian tăng 1h nên ta có phương trình:
xy=(x-10)(y+1) (2)
Từ (1) và (2) ta có hệ phương trình:
{xy=(x+20)(y−1)xy=(x−10)(y+1)⇔{xy=xy−x+20y−20xy=xy+x−10y−10{xy=(x+20)(y−1)xy=(x−10)(y+1)⇔{xy=xy−x+20y−20xy=xy+x−10y−10
⇔{x−20y=−20−x+10y=−10⇔{−10y=−30−x=10y=−10⇔{x−20y=−20−x+10y=−10⇔{−10y=−30−x=10y=−10
y=3\\-x+10.3=-10
\Vậy vận tốc dự định của ô tô là 40km/h; thời gian dự định của ô tô là 3h
Gọi vận tốc dự định và thời gian dự định là x và y (x,y>0). Theo đề bài ta có:
Nếu thời gian tăng thêm 14 km/h thì đến B sớm hơn 2 giờ nên ta có phương trình: \(\left(x+14\right)\left(y-2\right)=xy\Leftrightarrow xy-2x+14y-28=xy\Leftrightarrow-2x+14y=28\Leftrightarrow-x+7y=14\left(1\right)\)(do cả hai tích trên đều bằng độ dài quãng đường)
Nếu giảm vận tốc đi 4km/h thì đến B muộn 1 h nên ta có phương trình:
\(\left(x-4\right)\left(y+1\right)=xy\Leftrightarrow xy+x-4y-4=xy\Leftrightarrow x-4y=4\left(2\right)\) (do cả hai tích đều bằng độ dài quãng đường)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}-x+7y=14\left(1\right)\\x-4y=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được :
3y=18 ⇔ y=6 Thay vào (2) ta được: \(x-6\cdot4=4\Leftrightarrow x=4+24=28\)
Vậy vận tốc dự định và thời gian dự định là 28km/h và 6h
Lời giải:
ĐỔi 1h24' thành 1,4h
Gọi vận tốc dự định là $a$ (km/h). ĐK: $a>5$
Thời gian dự định là: $\frac{AB}{a}$ (h)
Theo bài ra ta có:
$\frac{AB}{a+10}=\frac{AB}{a}-1,4$
$\frac{AB}{a-5}=\frac{AB}{a}+1$
\(\Leftrightarrow \left\{\begin{matrix} \frac{10AB}{a(a+10)}=1,4\\ \frac{5AB}{a(a-5)}=1\end{matrix}\right.\Rightarrow \frac{2(a-5)}{a+10}=1,4\Rightarrow a=40\) (km/h)
Độ dài quãng đường $AB$ là: \(AB=\frac{1,4a(a+10)}{10}=\frac{1,4.40.50}{10}=280\) (km)