Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
Gọi $s$ là chiều dài đoạn đường $AB$.
Thời gian đi nửa đoạn đường đầu tiên là:$t_1=\frac{\frac{s}{2} }{v_1}=\frac{s}{2v_1}$, với $v_1=20$km/h
Gọi $t_2$ là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian $\frac{t_2}{2}$
Người đó đi với vận tốc $v_2=10$ km/h; do đó đoạn đường đi được trong thời gian này là: $v_2.\frac{t_2}{2}$. Và cuối cùng trong thời gian $\frac{t_2}{2} $
Còn lại người đó dắt bộ với vận tốc $v_3=5$ km/h; do đó đoạn đường đi được trong thời gian này là $v_3.\frac{t_2}{2} $. Như vậy ta có: $\frac{s}{2}=v_2.\frac{t_2}{2}+v_3.\frac{t_2}{2} $,
Suy ra $t_2=\frac{s}{v_2+v_3} $. Thời gian đi hết toàn bộ quãng đường $AB$ là:
$t=t_1+t_2=\frac{s}{2v_1}+\frac{s}{v_2+v_3}=s\left ( \frac{1}{2v_1}+\frac{1}{v_2+v_3} \right ) $
Từ đó, vận tốc trung bình trên cả đoạn đường $AB$ là:
$v=\frac{s}{t}=\frac{1}{\frac{1}{2v_1}+\frac{1}{v_2+v_3} } $
Thay số ta được $v=\frac{40.15}{40+25}\approx 10,9$km/h.
b biết làm cách 2 ko? viết về ẩn t2 í. t đang cần làm cách đó gấp
mÌNH MỎI TAY QUÁ
Lấy gốc tọa độ tại AA chiều dương là chiều từ AA đến BB. Gốc thời gian là lúc 7h7h
Phương trình chuyển động của :
Xe đi từ A:A: xA=36t(km−h)xA=36t(km−h)
Xe đi từ B:xB=96−28t(km−h)B:xB=96−28t(km−h)
Hai xe gặp nhau khi :xA=xB:xA=xB
→36t=96−28t→36t=96−28t
⇒t=1,5(h)⇒t=1,5(h)
xA=36t=36.1,5=54(km)xA=36t=36.1,5=54(km)
Hai xe gặp nhau lúc 8h30′8h30′. Nơi gặp nhau cách AA 54km54km
TH1:TH1: Hai xe cách nhau 24km24km trước khi hai xe gặp nhau
Hai xe cách nhau 24km
⇔⇔ xB−xA=24xB−xA=24
⇔⇔ 96−28t′−36t′=2496−28t′−36t′=24
⇔t′=1,125h⇔t′=1,125h
Vậy lúc 8h7phút30giây hai xe cách nhau 24km
TH2:TH2: Hai xe cách nhau 24k sau khi gặp nhau
Hai xe cách nhau 24km
⇔xA−xB=24⇔xA−xB=24
⇔36t′′−96+28t′′=24⇔36t″−96+28t″=24
⇔t′′=1,875(h)⇔t″=1,875(h)
Vậy lúc 8h52phút30giây hai xe cách nhau 24km
bài 2:
ta có:
thời gian người đó đi trên nửa quãng đường đầu là:
t1=S1/v1=S/2v1=S/24
thời gian người đó đi hết nửa đoạn quãng đường cuối là:
t2=S2/v2=S2/v2=S/40
vận tốc trung bình của người đó là:
vtb=S/t1+t2=S/(S/40+S/24)=S/S(140+124)=1/(1/24+1/40)
⇒vtb=15⇒vtb=15 km/h
bài 3:
thời gian đi nửa quãng đầu t1=(1/2) S.1/25=S/50
nửa quãng sau (1/2) t2.18+(1/2) t2.12=(1/2) S⇔t2=S/30
vận tốc trung bình vtb=S/(t1+t2)=S/S.(1/50+1/30)=1/(1/50+1/30)=18,75(km/h)
HT
ta có:
gọi t' là tổng thời gian đi trên nửa quãng đường cuối
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S_1+S_2+S_3}{t_1+t_2+t_3}=\frac{S}{t_1+t'}\) (*)
ta lại có:
thời gian đi trên nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{60}\left(1\right)\)
tổng quãng đường lúc sau là:
\(S_2+S_3=\frac{S}{2}\)
\(\Leftrightarrow v_2t_2+v_3t_3=\frac{S}{2}\)
\(\Leftrightarrow25t_2+15t_3=\frac{S}{2}\)
\(\Leftrightarrow\frac{25t'+15t'}{2}=\frac{S}{2}\)
\(\Leftrightarrow40t'=S\Rightarrow t'=\frac{S}{40}\left(2\right)\)
lấy (1) và (2) thế vào phương trình (*) ta có:
\(v_{tb}=\frac{S}{\frac{S}{60}+\frac{S}{40}}=\frac{S}{S\left(\frac{1}{60}+\frac{1}{40}\right)}=\frac{1}{\frac{1}{60}+\frac{1}{40}}=24\)
vậy vận tốc trung bình của người này là 24km/h
trong 1/2 thời gian đầu người ấy đi được:
\(S''=\frac{t}{2}.v_{tb}=\frac{v_{tb}\left(t_1+t'\right)}{2}\)
\(\Leftrightarrow S''=\frac{24\left(\frac{S}{60}+\frac{S}{40}\right)}{2}\)
\(\Leftrightarrow S''=\frac{24\left(\frac{2S+3S}{120}\right)}{2}\)
\(\Leftrightarrow S''=\frac{\left(\frac{120S}{120}\right)}{2}\)
\(\Leftrightarrow S''=\frac{S}{2}\)
mình làm vậy bạn xem đúng ko nhé
Trung bình vận tộc trong giai đoạn hai là:
(18+12):2= 15(km/giờ)
Vận tốc trung bình của vật trong cả đoạn đường ab là :
(25+15) : 2 = 20 (km/giờ)
ta có:
vận tốc trung bình của vật là:
\(v_{tb}=\frac{S_1+S_2+S_3}{t_1+t_2+t_3}=\frac{S}{t_1+t'}\)(*)(t'=t2+t3)
ta lại có:
thời gian vật đi nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{50}\left(1\right)\)
mặt khác ta có:
S2+S3=\(\frac{S}{2}\)
\(\Leftrightarrow v_2t_2+v_3t_3=\frac{S}{2}\)
\(\Leftrightarrow18t_2+12t_3=\frac{S}{2}\)
\(\Leftrightarrow\frac{18t'}{2}+\frac{12t'}{2}=\frac{S}{2}\)
\(\Leftrightarrow40t'=S\Rightarrow t'=\frac{S}{40}\left(2\right)\)
thế (1) và (2) vào phương trình (*) ta được:
\(v_{tb}=\frac{S}{\frac{S}{50}+\frac{S}{40}}=\frac{S}{S\left(\frac{1}{50}+\frac{1}{40}\right)}=\frac{1}{\frac{1}{50}+\frac{1}{40}}=\frac{200}{9}\approx22,2\) km/h
a,thời gian người đó đi hết nửa quãng đường đầu
\(t_1=\dfrac{\dfrac{s_{AB}}{2}}{v_1}=\dfrac{\dfrac{40}{2}}{40}=0,5\left(h\right)\)
b, Vận tốc trung bình của xe máy trên cả chặng đường
\( v=\dfrac{s}{\dfrac{s}{2}(\dfrac{1}{v_1}+\dfrac{1}{v_2})} =\dfrac{1}{\dfrac{1}{2}(\dfrac{1}{ 40 }+\dfrac{1}{ 60 })} = 48 (km/h) \)
GIẢI :
Theo bài ra ta có :
\(s_2+s_3=\dfrac{s}{2}\)
Hay : \(v_2.\dfrac{t}{2}=v_3.\dfrac{t}{2}=\dfrac{s}{2}\)
\(\Leftrightarrow\left(v_2+v_3\right)t=s\)
\(\Rightarrow t=\dfrac{s}{v_2+v_3}\)
Thời gian đi hết quãng đường là :
\(t'=t_1+t=\dfrac{s}{2v_1}+\dfrac{s}{v_2+v_3}=\dfrac{s}{2.45}+\dfrac{s}{30+25}=\dfrac{s}{90}+\dfrac{s}{55}\)
Vận tốc trung bình trên đoạn đường AB là :
\(v_{tb}=\dfrac{s}{t'}=\dfrac{s}{\dfrac{s}{90}+\dfrac{s}{55}}=\dfrac{1}{\dfrac{1}{90}+\dfrac{1}{55}}\approx34,14\left(km/h\right)\)
Vậy vận tốc trung bình trên đoạn đường AB là 34,14km/h.
Gọi S là quãng đường AB
Thời gian người đó đi nữa quãng đường đầu : t'= \(\dfrac{S}{2.45}\) =\(\dfrac{S}{90}\)
Gọi t là thời gian người đó đi nửa quãng đường còn lại
Quãng đường người đó đi trong nửa thời gian t : S1 = \(\dfrac{t}{2}\) 30
Quãng đường người đó đi trong nua thoi gian t : S2 = \(\dfrac{t}{2}\) 25
Độ dài nửa quãng đường còn lại : S1 +S2 = \(\dfrac{t}{2}\) . (30 + 25)=\(\dfrac{t}{2}\) . 55
<=> \(\dfrac{S}{2}\) = \(\dfrac{t}{2}\) . 55
=> t =\(\dfrac{S}{55}\)
Vận tốc trung bình của người đó :
vtb =\(\dfrac{S}{t'+t}\)=\(\dfrac{S}{\dfrac{S}{55}+\dfrac{S}{90}}\)= 34,13 (km/h)
Vậy vận tốc ............