K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

Áp dụng HTL trong tam giác ABC vuông tại A:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Rightarrow AB=\sqrt{\dfrac{1}{\dfrac{1}{AH^2}-\dfrac{1}{AC^2}}}=\sqrt{\dfrac{1}{\dfrac{1}{20^2}-\dfrac{1}{35^2}}}\approx24\left(m\right)\)

\(BC^2=AB^2+AC^2\left(Pytago\right)\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+35^2}\approx43\left(m\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20.43\approx426\left(m^2\right)\)

2 tháng 3 2017

Diện tích phần cần tính gồm diện tích xung quanh của một hình trụ bán kính đường tròn đáy r (cm), chiều cao là 2r (cm) và một mặt cầu bán kính r (cm).

Diện tích xung quanh của hình trụ:

    Sxq = 2πrh = 2πr.2r = 4πr2

Diện tích mặt cầu:

    S = 4πr2

Diện tích cần tính là:

    4πr2 + 4πr2 = 8πr2

4 tháng 12 2019

Diện tích phần cần tính gồm diện tích xung quanh của một hình trụ bán kính đường tròn đáy r (cm), chiều cao là 2r (cm) và một mặt cầu bán kính r (cm).

Diện tích xung quanh của hình trụ:

S xq = 2 π rh = 2 π r ⋅ 2 r = 4 π r 2

Diện tích mặt cầu:

S = 4 π r 2

Diện tích cần tính là:

4 π r 2 + 4 π r 2 = 8 π r 2

20 tháng 3 2016

chưa học đến

20 tháng 3 2016

Diện tích phần cần tính gồm diện tích xung quanh hình trụ bán kính đường tròn đáy là r (cm), chiều cao là 2r (cm) và một mặt cầu bán kính r(cm).

Diện tích xung quanh của hình trụ:

\(S_{xq}=2\pi rh=2\pi r.2r=4\pi r^2\)

Diện tích mặt cầu: 

\(S=4\pi r^2\)

Diện tích cần tính là:

\(4\pi r^2+4\pi r^2=8\pi r^2\)  

DD/s >...... 

a:

Gọi O là trung điểm của CI

Xét tứ giác CKIH có

\(\widehat{CKI}+\widehat{CHI}=90^0+90^0=180^0\)

=>CKIH là tứ giác nội tiếp đường tròn đường kính CI

=>C,K,H,I cùng thuộc (O)

b: Xét (O) có

OI là bán kính

AB\(\perp\)OI tại I

Do đó; AB là tiếp tuyến của (O)

c: Ta có: ΔOKI cân tại O

mà OE là đường cao

nên OE là phân giác của góc KOI

Xét ΔOKE và ΔOIE có

OK=OI

\(\widehat{KOE}=\widehat{IOE}\)

OE chung

Do đó: ΔOKE=ΔOIE

=>\(\widehat{OKE}=\widehat{OIE}\)

=>\(\widehat{OKE}=90^0\)

=>EK là tiếp tuyến của (O)