Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định luật II Niu-tơn cho chuyển động của máy bay :
F - F m s = ma ⇒ F - μ P = (P/g).( v 2 /2s)
với F là lực kéo của động cơ, F m s là lực ma sát với đường băng, a là gia tốc của máy bay khối lượng m trên đoạn đường băng dài s. Từ đó suy ra :
Như vậy, động cơ máy bay phải có công suất tối thiểu bằng:
P = Fv = 5,2. 10 3 .25. ≈ 130 kW
Vật bắt đầu cất cánh có \(v_0=0\).
\(v=250km/h=\dfrac{625}{9}m/s\)
Gia tốc vật: \(a=\dfrac{v^2-v_0^2}{2S}=\dfrac{\left(\dfrac{625}{9}\right)^2-0}{2\cdot4000}=0,6m/s^2\)
Lực phát động của máy bay:
\(F=m\cdot a=500\cdot1000\cdot0,6=3\cdot10^5N\)
Ta có m = 300 tấn = 3.105 kg; F = 440 kN = 4,4.105 N; v = 285 km/h = 475/6 m/s
Gia tốc của máy bay là: \(a = \frac{F}{m} = \frac{{4,{{4.10}^5}}}{{{{3.10}^5}}} = \frac{{22}}{{15}}(m/{s^2})\)
Chiều dài tối thiểu của đường băng để đảm bảo máy bay cất cánh được là:
\(s = \frac{{{v^2} - v_0^2}}{{2.a}} = \frac{{{{\left( {\frac{{475}}{6}} \right)}^2}}}{{2.\frac{{22}}{{15}}}} \approx 2136,6(m)\)