K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Gọi chiều rộng mảnh vườn là x (m) (x>0)

=> Chiều rộng mảnh vườn: x+24 (m)

Diện tích mảnh vườn ban đầu : x(x+24) (m2)

Theo bài ta có : (x+22)(x+3) = x(x+24)+72

x2 + 3x + 22x + 66 = x+ 24x + 72

\(\Leftrightarrow x=6\) (tmx>0)

Diện tích mảnh vườn: 6.(6+24) = 180 m2

26 tháng 1 2021

Gọi chiều dài mảnh vườn là x ( x > 0 )

=> Chiều rộng mảnh vườn = 720/x ( m )

Tăng chiều dài 6m và giảm chiều rộng 4m

=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m

Khi đó diện tích mảnh vườn không đổi

=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )

Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )

=> Chiều dài mảnh vườn = 30m

Chiều rộng mảnh vườn = 720/30 = 24m

2:

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có:

a+b=50 và (a-4)(b+3)=ab-2

=>a+b=50 và 3a-4b=10

=>a=30 và b=20

S=30*20=600m2

1 tháng 6 2021

Gọi chiều dài là a, chiều rộng là b (ĐK: a > b > 0)

=> S = ab (2)

Tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2

=> (a + 2).(b + 3) = S + 100

=> ab + 3a + 2b + 6 = S + 100 (1)

Nếu giảm cả chiều dài và chiều rộng của mảnh vườn đó đi 2m thì diện tích giảm 68m2

=> (a - 2).(b - 2) = S - 68

=> ab - 2b - 2a + 4 = S - 68 (3)

Từ (1); (2); (3) ta có hệ PT:

\(\left\{{}\begin{matrix}ab=S\\ab+3a+2b=S+94\\ab-2a-2b=S-72\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=94\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+4b=188\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=22\left(m\right)\\b=14\left(m\right)\end{matrix}\right.\)

S = ab = 22.14 = 308 (m2)

 

 

1 tháng 6 2021

Cảm ơn ạ

 

lập ptr là ra mà, k khó

28 tháng 4 2020

Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x

Diện tích mảnh vườn ban đầu là:  \(3x^2\left(m^2\right)\)

Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:

\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)

Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:

\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)

\(\Leftrightarrow3x^2+20x+25=3x^2+385\)

\(\Leftrightarrow20x=360\)

\(\Leftrightarrow x=18\)

=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m. 

28 tháng 4 2020

\(ĐKXĐ:x\ne1;-4\)

\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)

\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)

\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)

\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)

\(\Leftrightarrow-x^2+12x+4-16x-4=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow-x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)

26 tháng 5 2016

cr là 24 cd 36