K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

Gọi x(m), y(m) lần lượt là chiều rộng, chiều dài ban đầu của mảnh vườn hình chữ nhật ( y > x > 0)

Theo đề bài ta có hệ phương trình \(\left\{{}\begin{matrix}2\left(x+y\right)=70\\\left(y-24\right)\left(x+3\right)=xy+72\end{matrix}\right.\)

giải hệ phương trình ta được

\(\left\{{}\begin{matrix}x=2\\y=68\end{matrix}\right.\)( thỏa)

Vậy chiều rộng ban đầu của mảnh vườn là 2 m

chiều dài ban đầu của mảnh vườn là 68 m

20 tháng 2 2019

Gọi CD là a ,CR là b(a,b>0)

a+b=70(1)

(a-24)(b+3)=ab+72   hay   ab+3a-24b-72=72 

3a-24b=144(2)

từ (1), (2) ta tìm đc CD :608/9

                             CR : 22/9

25 tháng 11 2021

12345678900

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

Gọi chiều dài và chiều rộng ban đầu của mảnh đất lần lượt là $a$ và $b$ (m)

Theo bài ra ta có: 

\(\left\{\begin{matrix} ab=630\\ a-5=b+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab=630\\ a=b+9\end{matrix}\right.\) 

$\Rightarrow b(b+9)=630$

$\Leftrightarrow b^2+9b-630=0$

$(b-21)(b+30)=0$

Vì $b>0$ nên $b=21$ (m)

$a=b+9=30$ (m)

 

10 tháng 5 2021

Gọi chiều dài là x (52>x>0)m

chiều rộng là 104:2-x m

diện tích ban đầu là x(52-x) m2

vì tăng chiều rộng để mảnh đất trở thành hình vuông nên cạnh hình vuông là x m

diện tích hình vuông là x2

vì khi tăng chiều rộng thì diện tích tăng 240 m2 nên ta có pt 

x(52-x)=x2-240

giải pt x=-4 ktm

x=30 tm

chiều dài của hcn là 30 m

chiều rộng của hcn là 52-30=22 m

diện tích hcn ban đầu là 30.22=660 m2

10 tháng 5 2021

Gọi chiều dài mảnh vườn ban đầu là x(m)

thì chiều rộng mảnh vườn ban đầu là 52-x(m)

Diện tích ban đầu của mảnh vườn là x(52-x)(m2)

Diện tích lúc sau của mảnh vườn là x2 =x(52-x)+240(m2)

Đk: 0<x<104

Theo đề bài ta có

\(x^2=x\cdot\left(52-x\right)+240\)

\(x^2=52x-x^2+240\)

\(-2x^2+52x+240=0\)

\(\left[{}\begin{matrix}x=30\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)

Vậy diện tích ban đầu của mảnh vườn là \(30\cdot\left(52-30\right)=660\)(m2)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

Gọi chiều dài và chiều rộng của mảnh đất lần lượt là $a$ và $b$ (m)

ĐK: $a>b>0$

Theo bài ra ta có:

$a+b=104:2=52$ (m)

$\Rightarrow b=52-a$

$a^2=ab+240$

$\Leftrightarrow a^2=a(52-a)+240$

$\Leftrightarrow 2a^2=52a+240$

$\Leftrightarrow a^2-26a-120=0$

$\Leftrightarrow (a-30)(a+40)=0$

Vì $a>0$ nên $a=30$ (m)

Diện tích ban đầu là:

$ab=a^2-240=30^2-240=660$ (m2)

 

28 tháng 4 2020

Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x

Diện tích mảnh vườn ban đầu là:  \(3x^2\left(m^2\right)\)

Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:

\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)

Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:

\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)

\(\Leftrightarrow3x^2+20x+25=3x^2+385\)

\(\Leftrightarrow20x=360\)

\(\Leftrightarrow x=18\)

=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m. 

28 tháng 4 2020

\(ĐKXĐ:x\ne1;-4\)

\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)

\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)

\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)

\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)

\(\Leftrightarrow-x^2+12x+4-16x-4=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow-x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)

Gọi chiều rộng, chiều dài lần lượt là a,b

Theo đề ta có:

\(\left\{{}\begin{matrix}a+b=\dfrac{64}{2}=32\\\left(a-2\right)\left(b+4\right)=ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=32\\ab+4a-2b-8=ab\end{matrix}\right.\)

=>a+b=32 và 4a-2b=8

=>a=12; b=20

9 tháng 9 2021

Gọi chiều dài, chiều rộng lần lượt là \(a,b\left(a>b>0\right)\)

Ta có \(\left\{{}\begin{matrix}2\left(a+b\right)=34\\\left(a+3\right)\left(b+2\right)=ab+45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=17\\ab+2a+3b+6=ab+45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=17-b\\2\left(17-b\right)+3b=39\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=17-b\\34+b=39\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=12\\b=5\end{matrix}\right.\)

Vậy ...

 

10 tháng 1 2021

ai giải gúp mình được ko ạ