Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của mảnh vườn là x (m) (x > 4)
Chiều rộng của mảnh vườn là x – 4 (m)
Diện tích của mảnh vườn là 320 m2 nên ta có phương trình:
x(x - 4) = 320
⇔ x2 - 4x - 320 = 0
Δ' = 22 + 320 = 324, √(Δ') = 18
x1 = 2 + 18 = 20; x2 = 2 - 18 = -16
x2 = -16 không thỏa mãn điều kiện của ẩn
Vậy chiều dài của mảnh vườn là 20m
Chiều rộng của mảnh vườn là 16 m
Gọi chiều dài của mảnh vườn là x (m) (x > 4)
Chiều rộng của mảnh vườn là x – 4 (m)
Diện tích của mảnh vườn là 320 m2 nên ta có phương trình:
x(x - 4) = 320
⇔ x 2 − 4 x − 320 = 0 Δ ' = 2 2 + 320 = 324 , ( Δ ' = 18 x 1 = 2 + 18 = 20 ; x 2 = 2 − 18 = − 16
x 2 = - 16 không thỏa mãn điều kiện của ẩn
Vậy chiều dài của mảnh vườn là 20m
Chiều rộng của mảnh vườn là 16 m
Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng là 6 m và diện tích hình chữ nhật bằng 280 m . Tinh chiều dài và chiều rộng của mảnh đất.
Giải
Gọi x ( m ) là chiều dài của mảnh đất hình chữ nhật ( x ∈ N* )
Suy ra chiều rộng của mảnh đất hình chữ nhật là: x - 6 ( m )
Vì diện tích mảnh đất hình chữ nhật là 280 m2 nên ta có phương trình:
x ( x - 6 ) = 280
⇔ x2 - 6x - 280 = 0
Ta có: △ = b'2 - ac = ( -3 )2 - 1 . ( -280 ) = 289
Vì △ = 289 > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b'+\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)+\sqrt{289}}{1}=20\) ( nhận )
\(x_2=\dfrac{-b'-\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)-\sqrt{289}}{1}=-14\) ( loại )
Vậy chiều dài của mảnh đất hình chữ nhật là: 20 ( m )
Suy ra chiều rộng của mảnh đất hình chữ nhật là: 20 - 6 = 14 ( m )
Giải:
Gọi chiều dài của mảnh đất là a (m) (a>6)
Do chiều dài lớn hơn chiều rộng là 6m nên chiều rộng của mảnh đất là: a-6 (m)
Vì diện tích khu vườn là 280m nên ta có phương trình: a.(a-6)=280
<=> a^2-6a-280=0 (1)
Xét: Delta= (-6)^2 -4.(-280)=1156>0 => phương trình (1) luôn có 2 nghiệm phân biệt:
a1= 20 (thỏa mãn) và a2=-14 (loại)
Vậy chiều dài mảnh vườn là 20m và chiều rộng mảnh vườn là 20-6=14m
Gọi chiều dài hình chữ nhật là x ( m ) ( x>7 )
=> Chiều rộng hình chữ nhật đó là: x-7 ( m )
Theo đề bài ta có pt:
\(x\left(x-7\right)=114\)
\(\Leftrightarrow x^2-7x-114=0\)
\(\Delta=\left(-7\right)^2-4.-114=505>0\)
\(\left\{{}\begin{matrix}x_1=\dfrac{7+\sqrt{505}}{2}\left(tm\right)\\x_2=\dfrac{7-\sqrt{505}}{2}\left(ktm\right)\end{matrix}\right.\)
=> Chiều rộng hình chữ nhật là: \(\dfrac{7+\sqrt{505}}{2}-7=\dfrac{-7+\sqrt{505}}{2}\left(m\right)\)
Gọi chiều rộng là x
=>Chiều dài là x+13
Theo đề, ta có: x(x+13)=140
=>x^2+13x-140=0
=>(x+20)(x-7)=0
=>x-7=0
=>x=7
=>Chiều dài là 20m
Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1
Chiều dài ban đầu của mảnh đất: \(x+3\) (m)
Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)
Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)
Chiều rộng lúc sau: \(x-1\) (m)
Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)
Do diện tích mảnh đất ko đổi nên ta có pt:
\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+3x=x^2+4x-5\)
\(\Leftrightarrow x=5\left(m\right)\)
Vậy mảnh đất ban đầu rộng 5m, dài 8m
Gọi chiều dài mảnh đất là a, chiều rộng mảnh đát là b (mét ), a,b >0
\(\Rightarrow\)a= b+6
Ta có:
Diện tích mảnh đất: S= a \(\times\)b = (b+6)\(\times\)b
\(\Leftrightarrow\)S= b\(^2\)+ 6b = 112
\(\Leftrightarrow\)b\(^2\)+ 6b - 112 =0
\(\Leftrightarrow\)b\(^2\)+ 14b - 8b - 112= 0
\(\Leftrightarrow\)b ( b+14)- 8 ( b-14) =0
\(\Leftrightarrow\)(b-8)( b+ 14)= 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}b-8=0\\b+14=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}b=8\\b=-14\end{cases}}\)
Mà b> 0 \(\Rightarrow\)b=8 \(\Rightarrow\)a= 14
Vậy chiều dài cần tìm 14m, chiều rộng 8m
Lời giải:
Gọi chiều rộng mảnh đất là $a$ (m) thì chiều dài mảnh đất là $a+8$ (m)
Diện tích: $a(a+8)=384$
$\Leftrightarrow a^2+8a-384=0$
$\Leftrightarrow (a-16)(a+24)=0$
$\Rightarrow a=16$ (do $a>0$)
Vậy chiều rộng mảnh đất là $16$ m, chiều dài mảnh đất là $16+8=24$ m
https://hoc24.vn/cau-hoi/.5660716496676 hỗ trợ em với chị :<