K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=48/2=24dm

AB=AC=căn AH^2+HC^2=26(dm)

Xét ΔAHB có BM/BA=BE/BH=1/2

nên ME//AH và ME=1/2AH=5dm

Xét ΔCAH có CN/CA=CF/CH

nên NF//AH

=>NF/AH=CF/CH=1/2

=>NF=5dm

ΔAHB vuông tại H có HM là trung tuyến

nên HM=AB/2=13dm

13 tháng 8 2021

vãi fgdgfd

13 tháng 8 2021

vãi fgdgfd

15 tháng 9 2021

giup minh nha, minh can gapkhocroi

15 tháng 9 2021

\(7,\)

\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)

\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)

\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

Vậy \(BEFC\) là hình thang cân

 

 

11 tháng 8 2017

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 3 2019

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

12 tháng 11 2017

Chu vi tam giác ABC là: AB + BC + CA = 3 + 7 + 5 = 15 (cm)

Δ A’B’C’ Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC ⇒ Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8