Một mạch LC lý tưởng đang có dao động điện từ tự do. Điện tích cực đại trên một bản cực
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Ta có : \(\frac{T_{W_{\text{đ}}}}{6}=1,5.10^{-4}\)

\(\Rightarrow\frac{T_q}{6}=\frac{2T_{W_{\text{đ}}}}{6}=3.10^{-4}\)

Vậy chọn D.

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

20 tháng 7 2016

Ta có: \(W=W_t+W_d\)

\(\Leftrightarrow W_t=W_{dmax}-W_d\)

\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)

\(=5.10^{-5}J\)

17 tháng 8 2016

Sử sụng hệ thức: \left ( \frac{i}{I_{0}} \right )^{2}+\left ( \frac{q}{q_{0}} \right )^{2}= 1

Thay số và giải hệ phương trình trìm I0 và q0

Tần số góc: ω  = \frac{I_{0}}{q_{0}} = 50 (rad/s)

14 tháng 1 2016

\(I_0 = q_0.\omega = 4.10^{-12}.10^7= 4.10^{-5}A.\)
\(\left(\frac{q}{q_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)

=> \(\left(\frac{i}{I_0}\right)^2=1-\left(\frac{q}{q_0}\right)^2 = 1 - \left(\frac{2.10^{-12}}{4.10^{-12}}\right)^2= \frac{3}{4}.\)

=> \(i = I_0.\frac{\sqrt{3}}{2}=2\sqrt{3}.10^{-5}A.\)

14 tháng 1 2016

Do u vuông pha với i nên áp dụng công thức độc lập thời gian:

\((\dfrac{u}{U_0})^2+(\dfrac{i}{I_0})^2=1\)

25 tháng 1 2016

Từ ĐK đầu bài ta có: Zc^{2}=r^{2}+Zl^{2}=r^{2}+(Zl-Zc)^{2}\Rightarrow Zc=2Zl=100\Rightarrow \omega ^{2}=\frac{1}{2LC}
tần số dao động riwwng của mạch là:(80\Pi )^{2}=\frac{1}{L(C-\Delta C)}\Rightarrow L.C-L\Delta C=\frac{1}{80^{2}.10}\Rightarrow \frac{1}{2\omega^{2}}-\frac{50}{\omega }.\frac{0,125.10^{-3}}{\Pi }=\frac{1}{80^{2}.10}
giải phương trình bâc 2 này ra ta được: \omega =40\Pi

25 tháng 1 2016

Z=Z_{C}=Z_{Lr}=100\Omega

Z_{C}=2Z_{L}\Rightarrow \frac{1}{\omega C}=2\omega L\Rightarrow \frac{1}{LC}=2\omega ^{2}(1)

{\omega _{0}}^{2}=\frac{1}{L(C+\Delta C)}(2)

Lấy (1) chia (2) ta được:  \frac{2\omega ^{2}}{{\omega _{0}}^{2}}=\frac{C+\Delta C}{C}


 

14 tháng 12 2015

\(T = 2\pi .\sqrt{LC} = 2.10^{-5}s.\)

Thời gian từ lúc hiệu điện thế trên tụ cực đại U0 đến lúc hiệu điện thế trên tụ \(+\frac{U_0}{2}\) tính dựa vào đường tròn

U 0 +U 0 2

\(\cos \varphi = \frac{U_)/2}{U_0}= \frac{1}{2}=> \varphi= \frac{\pi}{3}. \)

\( t = \frac{\varphi}{\omega}= \frac{\pi/3}{2\pi/T}= \frac{T}{6}= \frac{1}{3}.10^{-5}s.\)

 

15 tháng 12 2015

Đáp án D nha bạn

Bạn áp dụng CT 

1/L* căn(L/C - R^2/2)

25 tháng 1 2016

Hướng dẫn giải:

Thời gian để tụ phòng hết điện tích (q0 -> 0) được tính như sau

\(t = \frac{\varphi}{\omega}=\frac{\pi/2}{2\pi/T}=\frac{T}{4} \) => \(T = 4.2.10^{-6}= 8.10^{-6}s.\)

\(I_0 = q_0.\omega = 10^{-8}.\frac{2\pi}{8.10^{-6}}= 2,5.\pi.10^{-3} => I = \frac{I_0}{\sqrt{2}} \approx 5,55 mA.\)

25 tháng 12 2017

huhukhó không làm nổihuhu