Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(R=\dfrac{R1\cdot R2}{R1+R2}=\dfrac{30\cdot20}{30+20}=12\Omega\)
b. \(U=U1=U2=IR=2\cdot12=24V\left(R1//R2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}I1=U1:R1=24:30=0,8A\\I2=U2:R2=24:20=1,2A\end{matrix}\right.\)
c. \(R=p\dfrac{l}{S}\Rightarrow S=\dfrac{p\cdot l}{R}=\dfrac{0,5\cdot10^{-6} \cdot2}{30}=3,\left(3\right)\cdot10^{-8}\Omega m\)
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{9.18}{9+18}=6\left(\Omega\right)\)
b. \(U=U1=U2=I1.R1=0,5.9=4,5V\left(R1\backslash\backslash\mathbb{R}2\right)\)
c. \(\left\{{}\begin{matrix}I2=U2:R2=4,5:18=0,25A\\I=I1+I2=0,5+0,25=0,75A\end{matrix}\right.\)
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
\(a,R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.40}{60+40}=24\left(\Omega\right)\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{12}{24}=0,5\left(\Omega\right)\)
\(b,P_1=\dfrac{U}{R_1}=\dfrac{12^2}{60}=2,4\left(W\right)\)
\(P_2=\dfrac{U^2}{R}=\dfrac{12^2}{40}=3,6\left(W\right)\)
\(P_m=U.I=12.0,5=6\left(W\right)\)
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.36}{12+36}=9\left(\Omega\right)\)
\(U=U_1=U_2=I_2.R_2=2.36=72\left(V\right)\)
\(I=\dfrac{U}{R_{tđ}}=\dfrac{72}{9}=8\left(A\right)\)
\(U=U1=U2=12V\left(R1\backslash\backslash\mathbb{R}2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}I1=U1:R1=12:5=2,4A\\I2=U2:R2=12:10=1,2A\end{matrix}\right.\)
Em cảm ơn ạ. làm cách 2 đi ạ cachs 1 em biết làm rồi ạ