K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Kẻ đường cao \(BK\)

Suy ra \(AH = BK\) và \(AHKB\) là hình chữ nhật

Suy ra \(HK = AB = 1\)cm

Vì \(ABCD\) là hình thang cân (gt)

\( \Rightarrow AC = BD\)  \(AD = BC\)  (tc)

Xét \(\Delta AHD\) và \(\Delta BKC\) ta có:

\(\widehat {{\rm{AHD}}} = \widehat {{\rm{BKC}}} = 90^\circ \) (gt)

\(\widehat D = \widehat C\) (định nghĩa hình thang cân)

\(AD = BC\) (tính chất hình thang cân)

Suy ra: \(\Delta AHD = \Delta BKC\) (ch – cgv)

Suy ra \(DH = KC\) (hai cạnh tương ứng)

Suy ra \(DH = KC = \frac{{CD - HK}}{2} = \frac{{3 - 1}}{2} = 1\) (cm)

Suy ra \(HC = 2\) (cm)

Áp dụng định lý Pythagore vào tam giác vuông \(AHD\) ta có:

\(A{D^2} = D{H^2} + A{H^2} = {1^2} + {3^2} = 10\)

Suy ra \(AD = \sqrt {10} \) (cm)

Áp dụng định lý Pythagore vào tam giác vuông \(ACH\) ta có:

\(A{C^2} = A{H^2} + H{C^2} = {3^2} + {2^2} = 9 + 4 = 13\)

\(AC = \sqrt {13} \) (cm)

Vậy \(AC = BD = \sqrt {13} \)cm; \(AD = BC = \sqrt {10} \) cm

Tham khảo:

loading...

loading...

3 tháng 3 2018

Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.

Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên  A H = C H = E H = A B + C D 2

29 tháng 10 2021

căn 2

 

24 tháng 6 2021

ertgrrrr545454545454545454lo;ơ'n0u

Câu 1:  a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm Câu 3: a) Cho D ABC ∽ D MNI. BiếtAˆA^= 800;NˆN^= 300. TínhCˆC^  b) Cho DABD DBDC, viết các cặp góc tương ứng...
Đọc tiếp

Câu 1:  

a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. 

b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm 

c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm 

Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm 

Câu 3: a) Cho D ABC ∽ D MNI. Biết

AˆA^

= 800;

NˆN^

= 300. Tính

CˆC^

 

 

b) Cho DABD DBDC, viết các cặp góc tương ứng bằng nhau của hai tam giác đã cho.   

Câu 4: Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Lấy N thuộc AC sao cho AN = 3cm. Chứng minh MN // BC. 

Câu 5: Cho tam giác ABC vuông tại A có AB = 12cm, AC = 15cm. Vẽ AM là tia phân giác của góc A (M thuộc BC). Biết BM = 8cm. Tính NC? 

Câu 6 : Cho có AB = 3cm, AC = 4,5cm, BC = 6cm. có DE= 12cm, EF=9cm, DF = 6cm. Chứng minh 

Câu 7: a) Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Biết MN // BC. Tính MN?  

b) Cho tam giác ABC có AB = 15cm, AC = 18cm. Trên AB lấy điểm M sao cho AM = 12cm, qua điểm M kẻ đoạn thẳng MN//BC. Tính độ dài đoạn thẳng AN? 

Câu 8:Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Kẻ MN song song với BC (NAC). Tính AN? 

Câu 9 : H.thang ABCD(AB//CD) có AB = 6cm, CD = 24cm, BD = 12cm. Chứng minh: DABDDBDC. 

Câu 10 : Cho nhọn. Trên cạnh Ox, đặt các đoạn thẳng OA = 6cm, OB = 18cm. Trên cạnh Oy, đặt các đoạn thẳng OC = 9cm, OD = 12cm.Chứng minh hai tam giác OAD và OCB  đồng dạng. 

Câu 11: Cho có MN = 6cm; MP = 8cm;  

NP = 12cm. Hai tam giác ABC và MNP có đồng dạng không? Vì sao?  

Câu 12: Cho góc nhọn xAy, trên tia Ax đặt hai đoạn thẳng AM = 10cm và AB = 12cm. Trên tia Ay đặt hai đoạn thẳng AN = 8cm và AC = 15cm. BN cắt CM tại H 

Chứng minh đồng dạng với   

Chứng minh    

1

Câu 11:

Xét ΔABC và ΔMNP có

\(\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}\left(=\dfrac{1}{2}\right)\)

Do đó: ΔABC~ΔMNP

Câu 12:

a: Xét ΔAMC và ΔANB có

\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\left(\dfrac{10}{8}=\dfrac{15}{12}\right)\)

\(\widehat{MAC}\) chung

Do đó: ΔAMC đồng dạng với ΔANB

b: Ta có: ΔAMC đồng dạng với ΔANB

=>\(\widehat{ACM}=\widehat{ABN}\)

Xét ΔHMB và ΔHNC có

\(\widehat{HBM}=\widehat{HCN}\)

\(\widehat{MHB}=\widehat{NHC}\)(hai góc đối đỉnh)

Do đó; ΔHMB đồng dạng với ΔHNC

=>\(\dfrac{HB}{HC}=\dfrac{BM}{CN}\)

=>\(HB\cdot CN=BM\cdot CH\)

Câu 10:

Xét ΔOAD và ΔOCB có

\(\dfrac{OA}{OC}=\dfrac{OD}{OB}\)

góc O chung

Do đó: ΔOAD~ΔOCB

19 tháng 6 2016

1/

  A B C D H K 1 2,7

Kẻ AH \(\perp\)CD , \(BK\perp CD\)

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)

Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

2/ 

I D C A B 1 2

a/ Cm: tam giác ICD đều:

 Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D 

 => ID = DC (1)

 => DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)

 Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị) 

       mà góc IDC = góc ICD

    => góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm

    => ID = IA + AD = 4 + 4 = 8cm (3) 

 Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều

b/ Tính chu vi hình thang ABCD:

 Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm

 ID = DC = 8cm

 Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)