Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Tứ giác có hai cạnh bên bằng nhau là hình thang cân.
→ Đáp án A sai vì hai cạnh bên bằng nhau chưa chắc tạo ra hình thang.
+ Hình thang cân có hai cạnh bên bằng nhau.
→ Đáp án B đúng.
+ Hình thang cân có hai góc kề một cạnh đáy bằng nhau.
→ Đáp án D đúng, đáp án C sai.
+ Tứ giác có hai cạnh bên bằng nhau là hình thang cân.
→ Đáp án A sai vì hai cạnh bên bằng nhau chưa chắc tạo ra hình thang.
+ Hình thang cân có hai cạnh bên bằng nhau.
→ Đáp án B đúng.
+ Hình thang cân có hai góc kề một cạnh đáy bằng nhau.
→ Đáp án D đúng, đáp án C sai.
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
1/
Kẻ AH \(\perp\)CD , \(BK\perp CD\)
Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK
=> tam giác AHD = tam giác BKC (gcg)
=> DH = KC
Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)
Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)
=> x = 1/2 hay DH = KC = 1/2
Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)
Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)
Vậy AB = 1,7m
2/
a/ Cm: tam giác ICD đều:
Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D
=> ID = DC (1)
=> DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)
Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị)
mà góc IDC = góc ICD
=> góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm
=> ID = IA + AD = 4 + 4 = 8cm (3)
Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều
b/ Tính chu vi hình thang ABCD:
Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm
ID = DC = 8cm
Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)
Gọi chiều rộng của mảnh vườn là x (m) (x > 0)
Chiều dài của mảnh vườn là 3x (m)
Diện tích mảnh vườn là 3 x . x = 3 x 2
Khi tăng mỗi cạnh lên 5m thì diện tích mảnh vườn là: ( 3 x + 5 ) ( x + 5 ) = 3 x 2 + 20 x + 25 .
Khi đó diện tích tăng thêm 385 m 2 nên ta có phương trình:
3 x 2 + 385 = 3 x 2 + 20 x + 25 ⇔ 20x = 360 ⇔ x = 18(tmđk)
Vậy chiều rộng của mảnh vườn là 18m, chiều dài của mảnh vườn là 18.3 = 54m
Gọi x(m) là chiều rộng của mảnh vườn ( x > 0 )
Chiều dài của mảnh vườn là 3x (m)
Diện tích mảnh vườn là 3x . x = 3x2 (m2)
Khi tăng mỗi cạnh lên 5m thì diện tích mảnh vườn là: ( 3 x + 5 ) ( x + 5 ) (m)
Khi đó diện tích tăng thêm 385 m2 nên ta có phương trình:
3x2 + 385 = 3x2 + ( 3 x + 5 ) ( x + 5 )
<=> 3x2 + 20x+25
<=>-20x = -360
<=>x = 18(tđk)
Vậy chiều rộng của mảnh vườn là 18m
chiều dài của mảnh vườn là 18.3 = 54m
d
D