Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi hình lăng trụ tam giác ABC.A'B'C' có H là hình chiếu vuông góc của A' lên trên mặt phẳng đáy (ABC).
Ta có A B = 3 , A A ' = 2 3 nên A ' H = A A ' . sin 30 ° = 3
Thể tích khối lăng trụ V A B C . A ' B ' C ' = 3 2 3 4 . 3 = 27 4
Chọn đáp án D.
Ta có A'A = A'B = A'C nên hình chiếu của A' là tâm đường tròn ngoại tiếp tam giác ABC.
Do tam giác ABC đều nên trọng tâm G là tâm đường tròn ngoại tiếp tam giác ABC.
AG là hình chiếu của A'A lên mặt phẳng (ABC)
Góc giữa A'A với mặt phẳng (ABC) là: A ' A G ^
Gọi H là trung điểm BC.
Ta có:
Xét tam giác A'AG vuông tại G:
Diện tích tam giác đều ABC là:
Thể tích khối lăng trụ ABC.A'B'C' là:
Đáp án C
Gọi H là trọng tâm tam giác đều ABC có diện tích S A B C = a 3 2
A 1 cách đều A, B, C
⇒ α = 60 o
Đáp án A
Gọi I là giao điểm của AH và BC
Theo giả thiết H là trực tâm của tam giác đều ABC nên AH là đường cao và H cũng lả trọng tâm của tam giác đều ABC
Đáp án C
Vì MNP là tam giác đều cạnh a nên S M N P = a 2 3 4
Do MNP.M'N'P' là lăng trụ đứng nên P P ' ⊥ M P
Mà MP' tạo với mặt phẳng đáy một góc bằng 60 độ
⇒ P M P ' ^ = 60 ° ⇒ P P ' = M P . tan 60 ° = a 3
Vậy thể tích của khối lăng trụ là
V = S M N P . P P ' = a 2 3 4 . a 3 = 3 4 a 3
Đáp án C