K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

Chọn A.

Thiết diện qua trục của hình trụ là hình vuông nê hình trụ có bán kính đáy là a, chiều cao là 2a.

Do đó thể tích khối trụ là:

V = πR 2 h = 2 πa 3

11 tháng 11 2018

Chọn A.

Hình trụ có bán kính đáy a và đường cao a 3  nên:

S xq  = 2 π rh = 2 π a.a 3  = 2 π a 2 3

13 tháng 7 2018

Chọn A.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.14) Gọi O, O' là hai tâm của hai đáy hình trụ và thiết diện qua trục là hình chữ nhật ABCD.

Do chu vi đáy của hình trụ đó bằng 6 π  (cm) nên bán kính đáy của hình trụ là: R = 3 (cm)

Vì thiết diện đi qua trục là một hình chữ nhật ABCD có AC = 10 (cm) và AB = 2R = 6 (cm) nên chiều cao của hình trụ là:

h = OO' = BC = 8 (cm)

Vậy thể tích khối trụ là: V =  π R 2 h = 72 π  ( cm 3 )

5 tháng 6 2019

Chọn A.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:  S 1  = 6 a 2 ;  S 2  = π a 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

30 tháng 11 2018

Chọn C.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.13) Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.

Theo giả thiết, đường tròn đáy có bán kính R = OA = a 3 và ∠ = 60 °

Trong tam giác SOA vuông tại O, ta có: OA = SO.tan60 °  ⇒ SO = a.

Do đó chiều cao của hình nón là h = a.

Vậy thể tích hình nón là: V =  π a 3

20 tháng 10 2019

 Chọn C.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.2.63) Một hình trụ có bán kính đáy a, có thiết diện qua trục là một hình vuông nên chiều cao hình trụ bằng 2a.

Vậy diện tích xung quanh khối trụ là:

S xq = 2 πRh = 4 πa 2

2 tháng 9 2019

Đáp án D

24 tháng 3 2017

Đáp án D

Từ giả thiết ta có:

12 tháng 8 2019

Chọn B

Gọi a là cạnh của hình lập phương ta có hình trụ tròn xoay ngoại tiếp hình lập phương đó có bán kính đáy r = (a 2 )/2 và chiều cao h = a.

Suy ra:

Giải sách bài tập Toán 12 | Giải sbt Toán 12