K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: M và D đối xứng nhau qua AB

nên AB là đường trung trực của MD

=>AB vuông góc với MD tại trung điểm của MD

=>AM=AD
=>ΔAMD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME

=>AC vuông góc với ME tại trung điểm của ME

=>H là trung điểm của ME

=>AM=AE

=>ΔAME cân tại A

mà AC là đừog cao

nên AC là tia phân giác của góc MAE(2)

Xét tứ giác AIMH có \(\widehat{AIM}=\widehat{AHM}=\widehat{HAI}=90^0\)

nên AIMH là hình chữ nhật

b: Xét ΔBAC có

Mlà trung điểm của BC

MI//AC

Do đó: I là trung điểm của AB

Xét tứ giác AMBD có

I là trung điểm của AB

I là trung điểm của MD

Do đó: AMBD là hình bình hành

mà MA=MB

nên AMBD là hình thoi

c: Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot90^0=180^0\)

hay E,A,D thẳng hàng

29 tháng 12 2017

cho mình vài ba phút nha

29 tháng 12 2017

nhanh jk bạn

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

18 tháng 11 2015

tick cho mình rồi mình giải cho

16 tháng 11 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình chữ nhật

16 tháng 11 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình chữ nhật

16 tháng 11 2021

a: Xét tứ giác AIMK có 

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

Do đó: AIMK là hình chữ nhật