Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình chính tắc của (E) có dạng
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a
Ta có A(0;2) \(\in\left(E\right)\)<=>b=2
(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)
Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3
==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)
c, S=4ab=24
Đáp án: C
(E): 4 x 2 + 5 y 2 = 20
Ta có: a 2 = 5 ⇒ a = 5 , b 2 = 4 ⇒ b = 2
Hình chữ nhật cơ sở có độ dài hai cạnh lần lượt là 2a = 2 5 , 2b = 4
Suy ra, diện tích hình chữ nhật cơ sở là: 2 5 .4 = 8 5
Đáp án: C
Cho elip (E) đi qua điểm A(-3;0) và có tâm sai
Giả sử elip có dạng:
Vì (E) đi qua điểm
Vậy elip (E) có tiêu cự là:
Chọn A.
Độ dài trục lớn bằng 10 ⇒ 2a = 10 ⇔ a = 5, a 2 = 25
Độ dài tiêu cự bằng 6 ⇒ 2c = 6 ⇔ c = 3
Ta có: a 2 - b 2 = c 2 ⇒ b 2 = a 2 - c 2 = 5 2 - 3 2 = 16
Vậy phương trình của elip (E) là:
Ta có: độ dài trục lớn là 10 nên 2a= 10 => a= 5.
Độ dài tiêu cự là 6 nên 2c= 6 => c= 3
Ta có: b2 = a2- c2= 25- 9= 16 => b= 4
Vậy phương trình của Elip là: x 2 25 + y 2 16 = 1
Chọn A.
Ta có độ dài trục nhỏ bằng 8 nên 2b = 8 b = 4
Hình chữ nhật cơ sở có chu vi bằng 40 nên 4a + 4b = 40
Mà b = 4 nên a= 6
Phương trình chính tắc của (E): x 2 36 + y 2 16 = 1
Đáp án A
\(\left\{{}\begin{matrix}4a.b=80\\2c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=20\\c=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\frac{20}{a}\\a^2-b^2=c^2=9\end{matrix}\right.\)
\(\Rightarrow a^2-\frac{400}{a^2}=9\Rightarrow a^4-9a^2-400=0\Rightarrow a^2=25\Rightarrow a=5\)
\(\Rightarrow e=\frac{c}{a}=\frac{3}{5}\)