K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tổng số ngày là: \(n = 20\).

Gọi \({x_1};{x_2};...;{x_{20}}\) là doanh thu bán hàng của các ngày được xếp theo thứ tự không giảm.

Ta có:

\({x_1},{x_2} \in \begin{array}{*{20}{c}}{\left[ {5;7} \right)}\end{array};{x_3},...,{x_9} \in \begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array};{x_{10}},...,{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array};{x_{17}},{x_{18}},{x_{19}} \in \begin{array}{*{20}{c}}{\left[ {11;13} \right)}\end{array};{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {13;15} \right)}\end{array}\)

Trung vị của mẫu số liệu là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right)\)

Vì \({x_{10}},{x_{11}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\) nên trung vị của mẫu số liệu trên thuộc khoảng \(\begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\).

Chọn B.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Số trung bình của mẫu số liệu trên là:

\(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4 \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\)

Chọn B.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\left\{{}\begin{matrix}u_3-u_1=20\\u_2+u_5=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(u_1+2d\right)-u_1=20\\\left(u_1+d\right)+\left(u_1+4d\right)=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2d=20\\2u_1+5d=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=10\\u_1=2\end{matrix}\right.\)

Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công sai \(d=10\)

\(b,\left\{{}\begin{matrix}u_2+u_3=0\\u_2+u_5=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d=0\\u_1+d+u_1+4d=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=-60\\d=40\end{matrix}\right.\)

Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=-60\) và công sai \(d=40\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(c,\left\{{}\begin{matrix}u_5-u_2=3\\u_8\cdot u_3=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+4d-u_1-d=3\\\left(u_1+7d\right)\left(u_1+2d\right)=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=1\left(1\right)\\\left(u_1+7d\right)\left(u_1+2d\right)=24\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2), ta được:

\(\left(u_1+7\cdot1\right)\left(u_1+2\cdot1\right)=24\\ \Leftrightarrow u_1^2+9u_1-10=0\\ \Leftrightarrow\left(u_1-1\right)\left(u_1+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}u_1=1\\u_1=-10\end{matrix}\right.\)

Vậy có hai cấp số cộng \(\left(u_n\right)\) thỏa mãn:

- Cấp số cộng có số hạng đầu \(u_1=1\) và công sai \(d=1\)

- Cấp số cộng có số hạng đầu \(u_1=-10\) và công sai \(d=1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Dễ thấy x = 0 thuộc tập xác định của hàm số.

\(f\left( 0 \right) = {0^2} + 1 = 1\)

Ta có:       \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 1} \right) = {0^2} + 1 = 1\)

                   \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {1 - x} \right) = 1 - 0 = 1\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1 = f\left( 0 \right)\).

Vậy hàm số liên tục tại điểm \(x = 0\).

b)Dễ thấy x = 1 thuộc tập xác định của hàm số.

\(f\left( 1 \right) = {1^2} + 2 = 3\)

Ta có:       \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 2} \right) = {1^2} + 2 = 3\)

                   \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} x = 1\)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

Vậy hàm số không liên tục tại điểm \(x = 1\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\).

Trên khoảng \(\left( {0; + \infty } \right)\), hàm số \(f\left( x \right)\) là hàm căn thức xác định trên \(\left( {0; + \infty } \right)\) nên hàm số liên tục trên khoảng \(\left( {0; + \infty } \right)\).

Trên khoảng \(\left( { - \infty ;0} \right)\), hàm số \(f\left( x \right)\) là hàm lượng giác xác định trên \(\left( { - \infty ;0} \right)\) nên hàm số liên tục trên khoảng \(\left( { - \infty ;0} \right)\).

Vậy hàm số \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = \sqrt {0 + 4}  = 2\)

Ta có:       \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt {x + 4}  = \sqrt {0 + 4}  = 2\)

                   \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} 2\cos x = 2\cos 0 = 2\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 2\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 2 = f\left( 0 \right)\).

Vậy hàm số liên tục tại điểm \(x = 0\).

Vậy hàm số liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).

Ta có: \(f\left( 5 \right) = a\)

\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\).  Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).

Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

Ta có: \(f\left( { - 2} \right) = a\)

\(\mathop {\lim }\limits_{x \to  - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to  - 2} \frac{{{x^2} - 4}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \left( {x - 2} \right) =  - 2 - 2 =  - 4\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} =  - 2\).  Khi đó:

\(\mathop {\lim }\limits_{x \to  - 2} f\left( x \right) = f\left( { - 2} \right) \Leftrightarrow a =  - 4\).

Vậy với \(a =  - 4\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\{u_1}.{q^5} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\\left( {{u_1}.{q^4}} \right).q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\96q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 6\end{array} \right.\)

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 6\) và công bội \(q = 2\).

b)

\(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} + {u_1}.q = 60\\{u_1}.{q^4} - {u_1}.{q^2} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.q\left( {{q^2} + 1} \right) = 60\left( 1 \right)\\{u_1}.{q^2}\left( {{q^2} - 1} \right) = 144\left( 2 \right)\end{array} \right.\)

Do \({u_1} = 0\) và \(q = 0\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:

\(\frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} = \frac{{144}}{{60}} \Leftrightarrow \frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} =\frac{{12}}{{5}} \Leftrightarrow 5q\left( {{q^2} - 1} \right) = 12\left( {{q^2} + 1} \right)\)

\( \Leftrightarrow 5{q^3} - 12q = 5{q^2} + 12 \Leftrightarrow 5{q^3} - 12{q^2} - 5q - 12 = 0 \Leftrightarrow q=3\) thế vào (1) ta được \({u_1}=2\).

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và công bội \(q = 3\).