Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Thế năng đàn hồi : Thế năng đàn hồi :
Cách giải:
Độ dãn của lò xo tại vị trí cân bằng:
Biên độ dao động của con lắc: A = 7,5 - Δl0 = 7,5 - 2,5 = 5cm
Ta có: Δl0< A
Chọn chiều dương hướng xuống
=> Vị trí lực đàn hồi có độ lớn nhỏ nhất là vị trí lò xo hông giãn cũng hông nén: Δl = 0
Thế năng đàn hồi tại vị trí đó:
Thời gian lò xo giãn trong một chu kì được biểu diễn trên đường tròn lượng giác:
Đáp án D
Thiếu m hoặc \(\omega\),
Hướng dẫn: Từ \(F_{dh}\le1,5\) suy ra miền giá trị của li độ \(x\), từ đó tìm ra thời gian bạn nhé.
Chu kì dao động: T = 2π/ω = 2π/5π = 0,4s
Thời điểm t = 0 và thời điểm độ lớn lực đàn hồi bằng 0,5N được biểu diễn trên đường tròn lượng giác:
Một chu kì có 4 lần độ lớn lực đàn hồi bằng 0,5N
Sau 504T độ lớn lực đàn hồi bằng 0,5N lần thứ 2016
=> Lực đàn hồi có độ lớn bằng 0,5N lần thứ 2018 vào thời điểm:
Đáp án C
Ta có:\(\Delta\)l=4cm;A=8cm;T=2\(\pi\)\(\sqrt{\frac{\Delta l}{g}}\)=0,4(s)
2\(\alpha\)=\(\omega\)\(\Delta\)t nén
\(\Rightarrow\)\(\Delta\)t nén =\(\frac{2\alpha}{\omega}\)=\(\frac{2arccos\frac{\Delta l}{A}}{\frac{2\pi}{T}}\)=\(\frac{2.\frac{\pi}{3}}{2\pi}\).o,4=\(\frac{2}{15}\)(s)
Có j sai sót mong mn giúp đỡ
Chọn B
+ Thời gian lò xo nén là T/3. Thời gian khi lò xo bắt đầu bị nén đến lúc nén tối đa là T/6. Độ nén của lò xo là A/2, bằng độ giãn của lò xo khi vật ở vị trí cân bằng. Suy ra A = 12cm. Do đó độ giãn lớn nhất của lò xo 6cm + 12cm = 18cm.
Lực đàn hồi cực đại: \(F_{dhmax}=k(\Delta\ell_0+A)=9\) (1)
Lực đàn hồi ở VTCB là: \(F_{dhcb}=k.\Delta\ell_0=3\) (2)
Lấy (1) trừ (2) vế với vế ta được: \(k.A=6\) (3)
Lấy (2) chia (3) vế với vế ta được: \(\dfrac{\Delta\ell_0}{A}=\dfrac{1}{2}\)
Lực đàn hồi cực tiểu khi \(x=-\Delta\ell_0\)
Lực đàn hồi cực đại khi \(x=A\)
Biểu diễn dao động bằng véc tơ quay:
Thời gian tương ứng với véc tơ quay từ M đến N, góc quay: 1200
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{T}{3}\)
Lò xo giãn: \(A->N;P->A\)
Lò xo nén: \(N->P\)
Lực đàn hồi cùng chiều với lực kéo về: \(A->M;N->P;Q->A\)
Lực đàn hồi ngược chiều với lực kéo về: \(M-N;P->Q\)
Tỉ số thời gian giãn cho thời gian nén là \(\frac{^{T_D}}{^{T_N}}=2.\left(1\right)\)
Nhìn trên hình vẽ ta có thấy:
Thời gian ngược chiều ( \(M->N;P->Q\) ) + Thời gian nén ( N -> P ) = \(\frac{T}{2}\) (chính là thời gian đi nửa cung hình tròn)
còn lại bạn tham khảo ở : Câu hỏi của Phạm Hoàng Phương - Học và thi online với HOC24