Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn: Chọn đáp án A
Vì va chạm mềm nên tốc độ của hai vật ngay sau va chạm:
Đáp án C
Giai đoạn 1:
M1 chuyển động từ M đến O, sợi dây bị kéo căng =>
Giai đoạn 2:
M1 chuyển động từ O đến N, sợi dây chùng =>
Giai đoạn 3:
M1 đi thêm từ N đến P, sợi dây chùng
Giai đoạn 4:
M1 đi thêm từ P đến N, sợi dây chùng
Giai đoạn 5:
M1 đi thêm từ N đến O, sợi dây chùng
=> trong 1 chu kỳ, khoảng thời gian dây trùng là :0,5+0,25+0,25+0,5=1,5(s)
Đáp án B
Giả sử ban đầu kéo m1 đến A rồi thả nhẹ, đến O nó đạt tốc độ cực đại sau đó nó va chạm đàn hồi với m2. Vì va chạm tuyệt đối đàn hồi và hai vật giống hệt nhau nên sau va chạm m1 đứng yên tại O và truyền toàn bộ vận tốc cho m2 làm cho m2 chuyển động chậm dần làm cho lò xo nén dần. Đến B m2 dừng lại tức thời, sau đó, m2 chuyển động về phía O, khi đến O nó đạt tốc độ cực đại, gặp m1 đang đứng yên tại đó và truyền toàn bộ vận tốc cho m1 làm cho m1 chuyển động đến A. Cứ như vậy, hệ dao động gồm hai nửa quá trình của hai con lắc. Do đó, chu kì dao động của hệ:
Những bài liên quan đến va chạm đàn hồi đã được giảm tải bạn nhé, chỉ quan tâm đến va chạm mềm thôi.
Bài này phải sửa lại khi lò xo có độ dài cực đại thì gia tốc là 2(cm/s^2)
- Khi vật m1 ở vị trí lò xo có độ dài cực đại ---> ở biên --> vận tốc = 0.
- \(\omega=\frac{2\pi}{T}=1\)(rad/s)
- Biên độ: \(A=\frac{a_{max}}{\omega^2}=\frac{2}{\left(1\right)^2}=2cm\)
- Xét sự va chạm giữa m2 và m1:
+ Bảo toàn động lượng: \(p_t=p_s\Leftrightarrow m_2v=m_1v_1+m_2v_2\Leftrightarrow m_2v=2m_2v_1+m_2v_2\Leftrightarrow v=2v_1+v_2\)(1)
+ Bảo toàn động năng: \(W_{đt}=W_{đs}\Leftrightarrow\frac{1}{2}m_2v^2=\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2\Leftrightarrow m_2v^2=2m_2v_1^2+m_2v_2^2\Leftrightarrow v^2=2v_1^2+v_2^2\)
\(\Leftrightarrow\left(v-v_2\right)\left(v+v_2\right)=2v_1^2\Leftrightarrow2v_1\left(v+v_2\right)=2v_1^2\Leftrightarrow v+v_2=v_1\)(2)
Từ (1) và (2) suy ra: \(v_1=\frac{2}{3}v=\frac{2}{3}3\sqrt{3}=2\sqrt{3}\)(cm/s)
\(v_2=v_1-v=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\)(cm/s) (dấu - là do vật 2 chuyển động ngược lại)
- Sau va chạm, vật m1 có li độ 2cm, vận tốc: \(2\sqrt{3}cm\)
--> Biên độ dao động mới là: \(A'=\sqrt{x^2+\left(\frac{v}{\omega}\right)^2}=\sqrt{2^2+\left(\frac{2\sqrt{3}}{1}\right)^2}=4cm\)
+ Thời gian kể từ sau va chạm đến khi vật m1 đổi chiều chuyển động (ở biên) là: \(\Delta t=\frac{150}{360}T=\frac{120}{360}.2\pi=\frac{2}{3}\pi\)(s)
+ Quãng đường vật m2 đi được trong thời gian này là: \(S=v.\Delta t=\sqrt{3}.\frac{2}{3}\pi\simeq3,63cm\)
Khoảng cách giữa 2 vật: \(4+2+3,63=9,63\)(cm)
Đáp án C
Mình hiểu rồi, cảm ơn bạn nhé.