K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

Do 4 đỉnh hình vuông nằm trên 2 đường thẳng song song nên độ dài cạnh hình vuông chính là khoảng cách giữa hai đường thẳng song song

Ta có: d2: - x + 2y + 10= 0 hay 2x – 4y – 20 = 0

Khoảng cách hai đường thẳng là: d ( d 1 ; d 2 ) ​ =    1 − ( − 20 ) 2 2 + ​ ( − 4 ) 2 = 21 20

Diện  tích hình  vuông cần  tính  là:   S = 21 20 2 = 441 20

ĐÁP ÁN D.

21 tháng 6 2017

Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0

Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.

Lấy điểm  M( -2 ; -1) thuộc d.

Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0

Chọn B

7 tháng 8 2019

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.

NV
24 tháng 7 2021

Đường thẳng song song d nên nhận (3;-4) là 1 vtpt

Phương trình:

\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)

10 tháng 2 2018

Ta thấy: điểm A không thuộc hai đường thẳng trên.

Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng trên.

Độ dài 2 cạnh là:

do đó diện tích hình chữ nhật bằng : S= 2.1= 2

Chọn B.

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải:

Vì PTĐT cần tìm song song với $(\Delta)$ nên nó có dạng:

$3x-4y+m=0$

Khoảng cách từ $M$ đến đt cần tìm là:

$\frac{|3.2-4.(-2)+m|}{\sqrt{3^2+4^2}}=2$

$\Leftrightarrow |m+14|=10$

$\Rightarrow m=-4$ hoặc $m=-24$

Vậy PTĐT cần tìm là: $3x-4y-4=0$ hoặc $3x-4y-24=0$

NV
18 tháng 2 2022

Đường thẳng \(\Delta\) nhận (3;-4) là 1 vtpt

a. Do \(d_1||\Delta\) nên \(d_1\) cũng nhận (3;-4) là 1 vtpt

Phương trình d1:

\(3\left(x-2\right)-4\left(y-5\right)=0\Leftrightarrow3x-4y+14=0\)

b. Do d2 vuông góc \(\Delta\) nên d2 nhận (4;3) là 1 vtpt

Phương trình d2:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)