K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Trong `5` chu kì vật đi qua thời điểm vận tốc có độ lớn `5\pi(cm//s)` là `20` lần.

`=>1` lần vật đi trong: `\Delta t=T/12+T/6=T/4`

`=>` Kể từ `t=0` thời điểm vận tốc của vật có độ lớn `5\pi(cm//s)` lần thứ `21` là:

            `t=T/4+5T=10,5(s)`.

5 tháng 9 2023
Với phương trình x = 10cos(2πt - π/3) cm, ta cần tính quãng đường đi được từ lúc t = 0 đến lúc t = 13/6 s.

Để tính quãng đường đi được, ta sử dụng công thức sau:

Quãng đường đi được = |x(t2) - x(t1)|

Với t2 = 13/6 s và t1 = 0, ta có:

x(t2) = 10cos(2π(13/6) - π/3) cm x(t1) = 10cos(2π(0) - π/3) cm

Thay vào công thức, ta tính được quãng đường đi được.

Với phương trình x = 20cos(10πt + π/6) cm, ta cần tính thời điểm vật đi qua vị trí M có li độ 10 cm lần thứ 2023.

Để tính thời điểm vật đi qua vị trí M, ta sử dụng công thức sau:

t = (1/10π)arccos((x - 10)/20) - π/6

Thay vào công thức, ta tính được thời điểm vật đi qua vị trí M lần thứ 2023.

Vậy, ta đã giải được bài toán.

18 tháng 10 2023

Lần thứ nhất vật đi qua VTCB là: `t_1 =T/4 -T/6+T/4=T/3(s)`

`=>` Vật đi qua VTCB lần thứ `5` là: `t_5=T/3+[5-1]/2=[7T]/3=7/3(s)`.

23 tháng 10 2023

\(L=12cm\Rightarrow A=\dfrac{L}{2}=6cm\)

Chu kì dao động: \(T=\dfrac{62,8}{20}=3,14s\approx\pi\left(s\right)\Rightarrow\omega=\dfrac{2\pi}{T}=2\)

Áp dụng pt độc lập: \(x^2+\dfrac{v^2}{\omega^2}=A^2\)

\(\Rightarrow\left(-2\right)^2+\dfrac{v^2}{2^2}=6^2\Rightarrow v=\pm8\sqrt{2}\left(cm/s\right)=\pm0,08\sqrt{2}\left(m/s\right)\)

Mà vật đang chuyển động the chiều dương: \(v=0,08\sqrt{2}\left(m/s\right)\)

Gia tốc vật: 

\(a=-\omega^2x=-2^2\cdot\left(-2\right)=8cm/s^2\)

24 tháng 10 2023

loading...  loading...  

19 tháng 3 2023

CAU TRA LOI LA EM KO BIET

20 tháng 3 2023

a, 12

b, 376

c,0.12