Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h
HOK TOT
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h.
@học tốt nha!
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h.
Gọi vận tốc ca nô là x
Gọi vận tốc dòng nước là y (đơn vị km/h ; x,y > 0 )
Theo đề ta có
vận tốc khi xuôi dòng : x + y
vận tốc khi ngược dòng : x - y
2h30p=2.5h=5/2h
1h20p=4/3h
\(\frac{S}{v_{xuôi}}+\frac{S}{v_{ngược}}=\frac{12}{x+y}+\frac{12}{x-y}=\frac{5}{2}\)
\(\frac{4}{x+y}+\frac{8}{x-y}=\frac{4}{3}\)
Từ trên ta có HPT \(\hept{\begin{cases}\frac{12}{x+y}+\frac{12}{x-y}=\frac{5}{2}\\\frac{4}{x+y}+\frac{8}{x-y}=\frac{4}{3}\end{cases}}\)
Gọi \(x+y=a;x-y=b\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{a}+\frac{12}{b}=\frac{5}{2}\\\frac{4}{a}+\frac{8}{b}=\frac{4}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{a}+\frac{12}{b}=\frac{5}{2}\\\frac{12}{a}+\frac{24}{b}=\frac{12}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{12}{b}=\frac{3}{2}\\\frac{12}{a}+\frac{24}{b}=\frac{12}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=8\\\frac{12}{a}+\frac{24}{8}=\frac{12}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=8\\a=12\end{cases}}\)
\(\Rightarrow b=x-y=8;a=x+y=12\)
\(\Rightarrow x=10;y=2\)
PT Trên có 1 nghiệm (x;y) = (10;2 )
Trả lời:
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h.
~Học tốt!~
Gọi vận tốc riêng của canoo là x ( x>0
vận tốc cano đi xuôi là x + 4 (km/h)
thời gian cano đi xuôi là : \(\frac{80}{x+4}\)km/ h
vận tốc cano đi ngc là ; x - 4 (km/h)
thời gian cano đi ngc hết là \(\frac{72}{x-4}\)
ta lại có thời gian khi đi xuôi ít hơn thời gian đi ngc là 15 ph= \(\frac{1}{4}\)h
\(\Rightarrow\)pt \(\frac{80}{x+4}\)+\(\frac{1}{4}\)=\(\frac{72}{x-4}\)
giải ra ta đc x = 36
Gọi \(a,b\) lần lượt là vận tốc riêng của ca nô và vận tốc dòng nước \(\left(a>b>0\right)\).
Thời gian ca nô đi xuôi dòng khúc sông \(60km\) là : \(\dfrac{60}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(48km\) là : \(\dfrac{48}{a-b}\left(h\right)\).
Theo đề bài thì \(\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\left(1\right)\).
Thời gian ca nô đi xuôi dòng \(40km\) là : \(\dfrac{40}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(80km\) là : \(\dfrac{80}{a-b}\left(h\right)\)
Cũng theo đề bài, ta có : \(\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\left(2\right)\).
Từ \((1)\) và \((2)\), ta có hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\\\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\end{matrix}\right.\left(I\right)\)
Đặt : \(x=\dfrac{20}{a+b}\) và \(y=\dfrac{16}{a-b}\). Hệ \((I)\) được viết lại thành :
\(\left\{{}\begin{matrix}3x+3y=6\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\2x+5y=7\end{matrix}\right.\)
Hay : \(\left\{{}\begin{matrix}5x+5y=10\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{20}{a+b}=1\\\dfrac{16}{a-b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=20\\a-b=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=36\\a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=18\\b=2\end{matrix}\right.\) (thỏa mãn).
Vậy : Vận tốc riêng của ca nô là \(18(km/h)\) và vận tốc dòng nước là \(2(km/h).\)
Gọi vận tốc riêng của cano là x (km/h) với x>0
Gọi vận tốc của dòng nước là y (km/h) với y>0 và y<x
Vận tốc cano khi xuôi dòng: \(x+y\) (km/h)
Vận tốc cano khi ngược dòng: \(x-y\) (km/h)
Do cano xuôi dòng 60km và ngược dòng 48km hết 6h nên ta có:
\(\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\)
Do cano xuôi dòng 40km và ngược dòng 80km thì hết 7h nên ta có:
\(\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\\\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{120}{x+y}+\dfrac{240}{x-y}=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{144}{x-y}=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=16\\\dfrac{120}{x+y}+\dfrac{96}{16}=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=16\\x+y=20\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=2\end{matrix}\right.\)
Đáp án:vận tốc ca nô là 43 km/h và vận tốc nước là 3 km/h
Giải thích các bước giải:
Gọi vận tốc xuôi dòng của ca nô là x (km/h) và ngược dòng là y (km/h)
(x>y>0)
1 giờ rưỡi= 1,5 giờ
Ta có hệ pt:
{1.x+2.y=1261,5x+1,5y=129⇒{x=46(km/h)y=40(km/h){1.x+2.y=1261,5x+1,5y=129⇒{x=46(km/h)y=40(km/h)
Ta có x=ca nô + nước; y= ca nô - nước
=> vận tốc riêng của ca nô là: x+y2=43(km/h)x+y2=43(km/h)
Vận tốc dòng nước là 3 km/h