Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc thực tế của ca nô là x ( km/h ) ( x > 0 )
Vận tốc của ca nô khi xuôi dòng là: \(x+4\)( km/h ) ( lấy vận tốc ca nô + với vận tốc nước )
Thời gian xuôi dòng của ca nô là: \(\frac{30}{x+4}\)( giờ )
Vận tốc ngược dòng của ca nô là: \(x-4\)( km/h ) ( lấy vận tốc ca nô - với vận tốc nước )
Thời gian ngược dòng của ca nô là: \(\frac{30}{x-4}\)( giờ )
Theo đề bài ta có phương trình:
\(\frac{30}{x+4}+\frac{30}{x-4}=4\)
Giải nốt cái phương trình rồi kết luận
Toán lớp 5 kì 2 , ko phải toán lớp 9 => bịa là toán 9 => ko làm
Giải toán bằng cách lập phương trình:
Gọi vận tốc ca nô khi nước lặng là: \(x\) km/h ( \(x\) > 0)
Vận tốc ca nô khi xuôi dòng là: \(x\) + 5 ( km/h)
Thời gian ca nô xuôi dòng là: \(\dfrac{60}{x+5}\) (giờ)
Vận tốc ca nô khi ngược dòng là: \(x\) -5 ( km/h)
Thời gian ca nô ngược dòng là: \(\dfrac{60}{x-5}\) ( giờ)
Theo bài ra ta có phương trình:
\(\dfrac{60}{x+5}+\dfrac{60}{x-5}\) = 5 = \(\dfrac{60}{12}\)
⇒ \(\dfrac{1}{x+5}\) + \(\dfrac{1}{x-5}\) = \(\dfrac{1}{12}\)
⇒ 12 \(\times\) ( \(x+5+x-5\)) = (\(x\) + 5)(\(x-5\))
⇒ 12 \(\times\) 2\(x\) = \(x^2\) - 25
\(x^2\) - 25 - 24\(x\) = 0 ⇒ \(x^2\) - 24\(x\) - 25 = 0
ta có a - b + c = 1 - ( -24) - 25 = 0 ⇒ \(x\) = -1 ( loại); \(x\)= 25 ( thỏa mãn)
Vậy vận tốc ca nô khi nước lặng là 25 km/h
*Gọi vận tốc riêng của thuyền là x (km/h) (1<x < 60)
Vận tốc khi xuồng xuôi dòng là: x + 1 (km/h)
Vận tốc khi xuồng ngược dòng là: x - 1(km/h)
*Thời gian xuồng xuôi dòng từ A --> B là: 60/(x + 1) (h)
Thời gian xuồng xuôi dòng đến bến C là: 25/(x - 1) (h)
30 phút = 1/2 (h)
*Vì thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8 giờ nên ta có PT:
60/(x + 1) + 25/(x - 1) + 1/2 = 8
=> 60.2.(x - 1) + 25.2(x + 1) + (x - 1)(x + 1) = 8.2(x - 1)(x + 1)
<=> 120x - 120 + 50x + 50 + x^2 - 1 = 16x^2 - 16
<=> 15x^2 - 170x + 55 = 0
delta' = (- 85)^2 - 55.15 = 6400 = 80^2 > 0
=> PT có 2 nghiệm pb:
x1 = (85 - 80)/15 = 1/3 (loại)
x2 = (85 + 80)/15 = 11 (thỏa mãn điều kiện bài ra)
Vậy vận tốc xuồng máy khi nước yên lặng là 11km/h
Bài 2:
Gọi vận tốc cano là x
Vận tốc cano khi đi là x+3
Vận tốc cano khi về là x-3
Theo đề, ta có: 15/x+3+15/x-3=3-1/3=8/3
=>(15x-45+15x+45)/(x^2-9)=8/3
=>8x^2-72=3*30x=90x
=>8x^2-90x-72=0
=>x=12
1:
Gọi vận tốc cano là x
=>Vận tốc lúc đi là x+4, vận tốc lúc về là x-4
Theo đề, ta co: 30/x-4-30/x+4=1
=>(30x+120-30x+120)/(x^2-16)=1
=>x^2-16=240
=>x^2=256
=>x=16
Gọi vận tốc của ca nô khi nước yên lặng là x(km/h; x>4)
=> Vận tốc xuôi dòng của ca nô là x+4(km/h)
Vận tốc ngược dòng của ca nô là x-4(km/h)
Theo bải ra:
Khoảng cách giữa 2 bến sông A và B là 48 km
=> Thời gian xuôi dòng của ca nô:\(\frac{48}{x+4}\)(h)
Thời gian ngược dòng của ca nô:\(\frac{48}{x-4}\)(h)
Cả thời gian đi và về là 5(h)
=>\(\frac{48}{x+4}+\frac{48}{x-4}=5\)
=>\(\frac{48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}+\frac{48\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\frac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)
=>\(48\left(x-4\right)+48\left(x+4\right)=5\left(x+4\right)\left(x-4\right)\)
=>\(48x-192+48x+192=\left(5x+20\right)\left(x-4\right)\)
=>\(96x=5x^2-80\)
=>\(5x^2-96x-80=0\)
=>\(\orbr{\begin{cases}x=20\left(TM\right)\\x=\frac{-4}{5}\left(KTM\right)\end{cases}}\)
Vậy vận tốc của ca nô khi nước yên lặng là 20 km/h
Gọi vận tốc cano khi mặt nước yên lặng là x (km/h) (x>3)
Ta có : Vận tốc cano khi xuôi dòng là : x + 3 (km/h)
Vận tốc cano khi ngược dòng là : x - 3 (km/h)
Phương trình : \(\frac{15}{x+3}+\frac{20}{60}+\frac{15}{x-3}=3\)
\(\Leftrightarrow\frac{1}{x+3}+\frac{1}{x-3}=\frac{8}{45}\)
Giải phương trình trên ta được x = 12 (vì x>0)
Vậy : Vận tốc cano khi nước yên lặng là 12 km/h