K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2022

Ta có \(\dfrac{25}{x^2+y^2}+\dfrac{12,5}{xy}=25\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\)

mà \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=\dfrac{4}{25}\)

=> \(25\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge25.\dfrac{4}{25}=4\)(đpcm) 

"=" khi x = y = 2,5

2 tháng 5 2022

loading...  

27 tháng 10 2021

a: \(AH=\dfrac{3\sqrt{6}}{5}\left(cm\right)\)

\(AB=\sqrt{AH^2+HB^2}=\dfrac{3\sqrt{10}}{5}\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{3^2-\left(\dfrac{3\sqrt{10}}{5}\right)^2}=\dfrac{3\sqrt{15}}{5}\left(cm\right)\)

1: Xét (O) có 

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC⊥CB

hay OE//AC

Xét ΔOBE vuông tại B có BH là đường cao

nên \(OH\cdot OE=OB^2=R^2\)

2: Xét ΔOBE và ΔOCE có 

OB=OC

\(\widehat{BOE}=\widehat{COE}\)

OE chung

Do đó: ΔOBE=ΔOCE
Suy ra: \(\widehat{OBE}=\widehat{OCE}=90^0\)

hay EC là tiếp tuyến của (O)

24 tháng 3 2022

lm câu mấy ạ

24 tháng 3 2022

Nếu được thì mong cả 3 câu luôn bạn nhé. 

Vì mỗi phần tử ở 1 tập hợp đều chỉ xuất hiện 1 lần mà ở tập hợp A lại xuất hiện 4 lần lên 4

=> Tập hợp A = { 1 }

Tập hợp A là tập hợp của con của tập hợp B

Vì phần tử ở tập hợp A đều thuộc tập hợp B

=> A là tập hợp con của B

8 tháng 7 2016

... Cho em thắc mắc ạ, em không tìm đọc ở đâu có ghi rằng mỗi phần tử ở 1 tập hợp đều chỉ được phép xuất hiện 1 lần.
Nếu theo ý thầy thì đó là dạng tập hợp tổng quát.
Vậy ta phải kết luận là tập hợp tổng quát của A là A1 = { 1 } là tập con của B mới đúng chứ ạ.
Còn A có đến tận 4 số 1, trong khi B chỉ có 1 số 1, nếu thế bản chất là số lượng phần tử số 1 của A lớn hơn số lượng phần tử số 1 của B vậy A không thể là tập con của B ạ.
Khi vẽ ra sơ đồ ta sẽ thấy ngay ạ...
Mong thầy giải đáp giúp ạ
2 3 4 1 1 1 1

9 tháng 9 2021

a)\(\dfrac{2}{3}\sqrt{81}-\dfrac{1}{2}\sqrt{16}=\dfrac{2}{3}.9-\dfrac{1}{2}.4=6+2=8\)

b)\(0,5\sqrt{0,04}+5\sqrt{0,36}=0,5.0,2+5.0,6=0,1+3=3,1\)

c)\(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-13\right)^2}=\sqrt{5}-3+\sqrt{5}-13=2\sqrt{5}-16\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Câu a em nhầm dấu - thành + ở cuối. Kết quả đúng là 6-2=4

28 tháng 8 2021
Chào đồng hương tui cx lớp 9nek

Bài tập Tất cả

28 tháng 8 2021

Trả lời:

a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)

\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)

\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)

\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)

c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)