K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mong mọi người giúp đỡ. Em sắp thi tuyển sinh. Sau đây là đề thi thử của tỉnh Bình Dương năm 2017-2108 phần đại số.

Câu1 Tính

a) 3x2 - x -2 \(\sqrt{3x^2-x-2}\)= 1

b) \(\dfrac{x^4-3x^2+2}{\left(x+1\right)\left(x-\sqrt{2}\right)}=0\)

c) \(\left\{{}\begin{matrix}\dfrac{1}{X}+\dfrac{3}{Y}=6\\\dfrac{4Y+X}{XY}=12\end{matrix}\right.\)

Câu2: Cho

mX2 - (m+2)X + m + 4 =0 ( ĐK: m≠0)

a) Chứng minh rằng phương trình luôn có nghiệm ∀X ∈R

b) Tim m sao cho phương trình không nhận nghiệm là 0. Đồng thời tính nghiệm phương trình khi m= X- 4

c) Tìm m để có 2 nghiệm đối nhau.

d) Giả sử X,Y là nghiệm phương trình trên. Khi đó, tìm m để thoả:

\(\dfrac{1}{\sqrt{X}}+\dfrac{1}{\sqrt{Y}}=\sqrt{X^2+Y^2}\)

Câu3 Hai xe suất phát từ A đến B. Xe nhất đi trước xe thứ 2 3h. Đi được đoạn đường thi gặp trục trặc nên trong 15’ vẫn tốc của xe đã giảm đi 20km/h so với ban đầu . Chính vì vậy xe thứ hai đã đến trước xe thứ nhất 5’. Biết vận tốc xe thứ 2 lớn hơn xe thứ nhất là 40km/h.

a) Tính vận tốc ban đàu của hai xe.

b) Đoạn đường trong suốt khoảng thời gian trục trặc của xe nhất là bao nhiêu km? Khi đó xe thứ 2 còn bao nhiêu giờ nữa mới đến B?

Câu4 A=\(\left(\left(\dfrac{\left(1+\sqrt{X^{ }}\right)^2}{x+1}+\dfrac{\left(1-\sqrt{X}\right)^2}{x+1}\right)x^3\right)^2\)- 4x6 + 8x5 -8. ( ĐK X≠1 và X>0)

a) Rút gọn biểu thức A.

b) Tính khi A= x + 8x5

c)Tìm GTNN của A

Câu5 Cho đồ thị y=2x2 -4 (P) và (d): y=4x+9.

a) Vẽ (P)

b) Viết phương trình (a) sao cho tiếp xúc với (P) và song song với (d).

c) Cho (d1) y=5x-10 và (d2) y=0,5x+0,25. Tìm điểm đồng quy của của hai đường thẳng trên với (a).

1
13 tháng 5 2018

Mọi người ơi đề bài câu 2 có tí sai xót:

mx2 - 2(m+2)x +m +4 =0 ( ĐK m≠0)

Mọi người bõ qua sai xót thương tình giúp em nha.

Mai mình thi vào 10 và thầy cho mình đề này, mong các thầy (cô) và các bạn giúp mình giải đề này! Mình xin cảm ơn! 1. Cho biểu thức \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\) với \(x0,x\ne1\) Rút gọn và tìm các giá trị nguyên của x để Q nhận giá trị nguyên. 2. Quãng đường AB dài 50km. Một người dự định đi xe đạp từ A đến B với vận tốc không đổi. Khi đi được 2 giờ,...
Đọc tiếp

Mai mình thi vào 10 và thầy cho mình đề này, mong các thầy (cô) và các bạn giúp mình giải đề này!
Mình xin cảm ơn!
1. Cho biểu thức \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\) với \(x>0,x\ne1\)
Rút gọn và tìm các giá trị nguyên của x để Q nhận giá trị nguyên.
2. Quãng đường AB dài 50km. Một người dự định đi xe đạp từ A đến B với vận tốc không đổi. Khi đi được 2 giờ, người ấy dừng lại 30 phút để nghỉ. Muốn đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 2 km/h trên quãng đường còn lại. Tính vận tốc ban đầu của người đi xe đạp.
3. a) Cho phương trình bậc hai \(x^2+5x+3=0\) có hai nghiệm \(x_1;x_2\). Hãy lập một phương trình bậc hai có hai nghiệm \(\left(x_1^2+1\right)\)\(\left(x_2^2+1\right)\).
b) Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y-2}=4\\\dfrac{4}{x}-\dfrac{1}{y-2}=1\end{matrix}\right.\)

4. Cho tam giác ABC vuông tại A, trên cạnh AC lấy điểm D \(\left(D\ne A,D\ne C\right)\). Đường tròn (O) đường kính DC cắt BC tại E \(\left(E\ne C\right)\).
a) Chứng minh tứ giác ABED nội tiếp.
b) Đường thẳng BD cắt đường tròn (O) tại điểm thứ hai I. Chứng minh ED là tia phân giác của góc AEI.

c) Gỉa sử \(\tan ABC=\sqrt{2}\). Tìm vị trí của D trên AC để EA là tiếp tuyến của đường tròn đường kính DC.

7
4 tháng 6 2018

khúc mắc câu nào bạn?

4 tháng 6 2018

Van Han: hồi âm lâu quá làm tớ chẳng để ý gì hết, câu 5 nào đâu?

24 tháng 11 2018

Bài 2:

1.Thay m=3, ta có:

\(\left\{{}\begin{matrix}3x+2y=5\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

24 tháng 11 2018

Bài 1:

\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y=-4\end{matrix}\right.\)

\(\Rightarrow\left|y-1\right|-4y=9\)\(\Leftrightarrow\left[{}\begin{matrix}y=-3,\left(3\right)\left(KTM\right)\left(ĐK:y\ge1\right)\\y=-1,6\left(TM\right)\left(ĐK:y< 1\right)\end{matrix}\right.\)

Thay y=-1,6 vào hpt, ta được:

\(\left\{{}\begin{matrix}\left|x+1\right|=2,4\\\left|x+1\right|=-10,4\left(vl\right)\end{matrix}\right.\)

Vậy pt vô nghiệm.

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

14 tháng 5 2018

Δ=m^2-m(m-1)

=m

Δ≠0mọi m≠0=>pt không tồn tại nghiệm kép dpcm

b .

x=3y+1

x+y=4y+1

viet

2=4y+1

y=1/4

x=2-1/4=7/4

xy=(m-1)/m=1-1/m=7/4

1/m=1-7/4=-3/4=1/(-3/4)

m=-3/4

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

23 tháng 4 2021

2)

\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)

    \(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

    \(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

    \(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)

1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)

Ta có: \(x^2+2y^2=9\)

\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)

\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)

\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)

\(\Leftrightarrow123m^2+206m-45=0\)

Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi

20 tháng 1 2019

1.

a, \(\left\{{}\begin{matrix}2x-3y=3\\-4x=3x-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=3\\-4x-3x=13\end{matrix}\right.\)\(\left\{{}\begin{matrix}-4x+6y=-6\\-4x-3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9y=-19\\-4x+6y=-6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=-\dfrac{19}{9}\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=9\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=2\\\dfrac{3}{x}+\dfrac{3}{y}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\left(TM\right)\\y=\dfrac{1}{2}\left(TM\right)\end{matrix}\right.\)

c, \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{x}=16\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{16}\left(TM\right)\\y=\dfrac{13}{7}\left(TM\right)\end{matrix}\right.\)

d, \(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\left(x\ge-1,y\ge1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+1}-6\sqrt{y-1}=-8\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{y-1}=-10\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-1}=2\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\y=5\left(TM\right)\end{matrix}\right.\)

26 tháng 4 2019

Câu a sai rồi : \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)mới đúng

Bài 1: Xác định một phương trình bậc nhất hai ẩn số biết hai nghiệm là (3;5) và (0;-2) Bài 2: Cho 2 phương trình: \(x+y=2\) và \(x-2y=-1\). Tìm một cặp số (x;y) là nghiệm chung của 2 phương trình Bài 3: Tìm các nghiệm nguyên của 2 phương trình: a) \(4x-3y=11\) b) \(5x+3y=2\) Bài 4: Giải và biện luận hệ phương trình: a) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\) b)...
Đọc tiếp

Bài 1: Xác định một phương trình bậc nhất hai ẩn số biết hai nghiệm là (3;5) và (0;-2)

Bài 2: Cho 2 phương trình: \(x+y=2\)\(x-2y=-1\). Tìm một cặp số (x;y) là nghiệm chung của 2 phương trình

Bài 3: Tìm các nghiệm nguyên của 2 phương trình:

a) \(4x-3y=11\)

b) \(5x+3y=2\)

Bài 4: Giải và biện luận hệ phương trình:

a) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}mx+y=m\\x+my=1\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}ax+y=b\\x-y=2\end{matrix}\right.\)

Bài 5: a) Tìm m để hệ pt sau vô nghiệm : \(\left\{{}\begin{matrix}x+2y=3\\mx-4y=-5\end{matrix}\right.\)

b) Tìm m để hệ pt sau có nghiệm duy nhất : \(\left\{{}\begin{matrix}\left(m-2\right)x+y=3\\x+y=1\end{matrix}\right.\)

Bài 6: Tìm m để ba đường thẳng sau đồng quy:

\(\left(d_1\right)\): \(2x+3y=7\) \(\left(d_2\right)\): \(x-y=6\) \(\left(d_3\right)\): \(3x+my=13\)

Bài 7: Tìm các gtri của m để hệ pt : \(\left\{{}\begin{matrix}3x-y=2-m\\x+2y=m+1\end{matrix}\right.\)có nghiệm \(\left(x_0;y_0\right)\) và sao cho \(x_0^2+y_0^2\) đạt GTNN

Bài 8: Giải hệ pt : \(\left\{{}\begin{matrix}m\left|x\right|-y=m\\\left|x\right|+my=1\end{matrix}\right.\)

Bài 9: a) Tìm m để hệ pt \(\left\{{}\begin{matrix}2x-my=-3\\mx+3y=4\end{matrix}\right.\)có nghiệm (x;y) và x<0; y>0

b) Tìm m để hệ pt \(\left\{{}\begin{matrix}3x-6y=1\\5x-my=2\end{matrix}\right.\) có nghiệm (x;y) và x<0; y<0

Bài 10: Hai xe cùng khởi hành một lúc ở 2 tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ, nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Bài 11: Hai loại quặng chứa 75% và 50% sắt. Tính khối lượng của mỗi loại quặng đem trộn để được 25 tấn quặng có chứa 66% sắt.

Mọi người giúp em giải chi tiết các bài này gấp với ạ!!!!!!!

0
12 tháng 5 2018

Câu2 : <=> 2x4-2x2+5x5-5=0
<=>2x2(x2-1)+5(x2-1)=0

<=>(2x2+5)(x-1)(x+1)=0

<=> x={+-1 } vì 2x2+5>0 mọi x

12 tháng 5 2018

Câu 2:<=>3x3-3x2+13x2-13x=0 <=> 3x2(x-1)+13x(x-1)=0 <=> x(3x2+13)(x-1)=0 <=>x={0;1) vì 3x2+13>0 mọi X