Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABD và tam giác AED
AB=AE(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung)
\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)
b)Xét tam giác ADF và tam giác ADC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)
\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)
c)Xét tam giác AMF và tam giác AMC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)
\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)
\(\Rightarrow\)AMF=AMC=1800:2=900
Do đó Am vuông góc với CF
a)XÉT ▲ABD VÀ ▲AED CÓ:
AD CHUNG
AB=AE(GT)
GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)
=> ▲ABD= ▲AED(C-G-C)
gọi H là giao điểm của BE và AD
xét tam giác ABH và tam giác AEH có:
AB=AE (gt);
góc BAH=góc EAH
(vì H thuộc AD; AD là phân giác góc A)
AH là cạnh chung
=> tam giác ABH = AEH (c.g.c)
=> BH=EH
xét tam giác cân ABE (vì AB=AE) có:
BH=EH ( vì AH là đường trung tuyến)
=> AH cũng là đường cao
=>AH vuông BE
=>AD vuông BE
sai de