Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)
Nếu y = \(\sqrt{7}\) thì :
x2y3 = 5 . y2 .y
x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)
Nếu y = -\(\sqrt{7}\) thì :
x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)
b) x2y2 = 5.7 = 35
x6y6 = (x2y2)3 = 353 = 42875
c) làm tương tự câu (a). Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)
\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)
Mà x+y-2=0 => x+y-1=1 => C=1
b/ Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0
P=x3+x2y-2x2-y(x+y)+3y+x+2018
P=x2.(x+y-2)-y.(x+y)+3y+x+2018
Thay x+y=2 vào P ta có :
P=x2.(2-2)-2y+3y+x+2018
P=0.x2+y+x+2018
P=0+2+2018(x+y=2)
P=2020
Vậy với x+y=2 thì P=2020
Mik tham khảo thêm ở bài bạn này nha https://olm.vn/hoi-dap/detail/102286367829.html
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Sửa đề: \(\dfrac{x}{2}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-2y}{2-2\cdot3}=\dfrac{8}{-4}=-2\)
=>\(x=-2\cdot2=-4;y=-2\cdot3=-6\)
\(A=x^3+y^2=\left(-4\right)^3+\left(-6\right)^2=-64+36=-28\)