K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:

Câu này không có cách tính nhanh. Bạn tính như thông thường thôi. 

\(12,5-(\frac{16}{3}+\frac{3}{13})=12,5-\frac{217}{39}=\frac{541}{78}\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a)

\(\begin{array}{l}1,8 - \left( {\frac{3}{7} - 0,2} \right)\\ = 1,8 - \frac{3}{7} + 0,2\\ = \left( {1,8 + 0,2} \right) - \frac{3}{7}\\ = 2 - \frac{3}{7} =\frac{{14}}{7}-\frac{{3}}{7}= \frac{{11}}{7}\end{array}\)

b)

\(\begin{array}{l}12,5 - \frac{{16}}{{13}} + \frac{3}{{13}}\\ = 12,5 - \frac{{16}}{{13}} + \frac{3}{{13}}\\ = 12,5 + \left( { - \frac{{16}}{{13}} + \frac{3}{{13}}} \right)\\ = 12,5 + \left( { - 1} \right) = 11,5\end{array}\)

15 tháng 12 2021

\(=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{5}{41}+\dfrac{36}{41}\right)=1-1=0\)

15 tháng 12 2021

                                                                             

8 tháng 7 2016

Do dãy 2000 số tự nhiên liên tiếp đó không có số nguyên tố nào nên chúng là hợp số.
Coi dãy đó chứa các số tự nhiên liên tiếp từ a + 2 đến a + 2001    \(\left(a\in N\right)\)
Để tất cả các số trên là hợp số thì a phải chia hết các số từ 2 đến 2001, vì vậy a = 2001!
Thế vào các số trên, ta có:
- a + 2 = 2001! + 2 = 2 ( 3 * 4 * 5 * ... * 2001 + 1 )                        ( là hợp số ) - thoả mãn
- a + 3 = 2001! + 3 = 3 ( 2 * 4 * 5 * ... * 2001 + 1 )                        ( là hợp số ) - thoả mãn
- a + 4 = 2001! + 4 = 4 ( 2 * 3 * 5 * ... * 2001 + 1 )                        ( là hợp số ) - thoả mãn
...................................................................................................................................
- a + 2001 = 2001! + 2001 = 2001 ( 2 * 3 * 4 * ... * 2000 + 1 )        ( là hợp số ) - thoả mãn
Vậy trong tập hợp số tự nhiên, dãy có 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào là:
2001! + 2  ;  2001! + 3  ;  2001! + 4  ;  ....  ; 2001! + 1999  ;  2001! + 2000  ; 2001! + 2001

22 tháng 8 2023

\(1)\)\(-\dfrac{10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

\(=\dfrac{10}{11}\left(-\dfrac{8}{9}+\dfrac{7}{18}\right)\)

\(=\dfrac{10}{11}\left(\dfrac{-16}{18}+\dfrac{7}{18}\right)\)

\(=\dfrac{10}{11}.\left(-\dfrac{1}{2}\right)=-\dfrac{5}{11}\)

\(2)\)\(\dfrac{12}{25}.\dfrac{23}{7}-\dfrac{12}{7}.\dfrac{13}{25}\)

\(=\dfrac{12}{7}.\dfrac{23}{25}-\dfrac{12}{7}.\dfrac{13}{25}\)

\(=\dfrac{12}{7}.\left(\dfrac{23}{25}-\dfrac{13}{25}\right)\)

\(=\dfrac{12}{7}.\dfrac{2}{5}=\dfrac{24}{35}\)

\(3)\)\(\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{2}{15}.\dfrac{-3}{7}\)

\(=\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{3}{7}.\dfrac{-2}{15}\)

\(=\dfrac{3}{7}.\left(\dfrac{16}{15}+\dfrac{2}{15}\right)\)

\(=\dfrac{3}{7}.\dfrac{18}{15}=\dfrac{18}{35}\)

\(4)\)\(-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-12}{13}.\dfrac{4}{17}\)

\(=-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-4}{13}.\dfrac{12}{17}\)

\(=-\dfrac{4}{13}.\left(\dfrac{5}{17}+\dfrac{12}{17}\right)\)

\(=-\dfrac{4}{13}.\dfrac{17}{17}=-\dfrac{4}{13}\)

`#040911`

`1)`

`-10/11 * 8/9 + 7/18 . 10/11`

`= 10/11 * (-8/9 + 7/18)`

`= 10/11 * (-1/2)`

`= -5/11`

`2)`

`12/25 * 23/7 - 12/7 *13/25`

`= 12/7 * 23/25 - 12/7 * 13/25`

`= 12/7 * (23/25 - 13/25)`

`= 12/7 * 2/5`

`= 24/35`

`3)`

`3/7 * 16/15 - 2/15 * (-3)/7`

`= 3/7 * (16/15 + 2/15)`

`= 3/7 * 6/5`

`= 18/35`

`4)`

`-4/13 * 5/17 + (-12)/13 * 4/17`

`= -4/17 * 5/13 + (-12)/13 * 4/17`

`= 4/17 * (-5/13 - 12/13)`

`= 4/17 * (-17)/13`

`= -4/13`

20 tháng 8 2021

Bài 5:

A 1 2 3 4 B 1 C 1 D 1

Ta có : \(\widehat{A_1}+\widehat{A_3}=180^o\) (kề bù)

            \(100^o+\widehat{A_3}=180^o\)

            \(\widehat{A_3}=80^o\)

Ta có: \(\widehat{A_3}=\widehat{B_1}=80^o\)

            \(\widehat{A_3}\) và \(\widehat{B_1}\) ở vị trí đồng vị 

\(\Rightarrow AC//BD\)

\(\Rightarrow\widehat{C}_1=\widehat{D_1}=135^o\) (đồng vị)

\(x=135^o\)

b)

G H B K 1 1 1 1

Ta có: \(\widehat{G_1}+\widehat{B_1}=180^o\left(120^o+60^o=180^o\right)\)

               \(\widehat{G_1}\) và \(\widehat{B_1}\) ở vị trí trong cùng phía

\(\Rightarrow QH//BK\)

\(\Rightarrow\widehat{H_1}=\widehat{K_1}=90^o\)(so le)

\(x=90^o\)

 

14 tháng 11 2021

Tỉ lệ \(x=\dfrac{y}{-5}\)

x             -4                 -1                2                   3

y             20                 5               -10               -15

24 tháng 10 2021

1: \(\dfrac{4}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)

\(=1+\dfrac{1}{2}\)

\(=\dfrac{3}{2}\)

2: \(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)

\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)

\(=\dfrac{1}{3}\)

5 tháng 10 2020

Bài 1 : Gọi số thứ nhất cần tìm là x,số thứ hai cần tìm là y,số thứ ba cần tìm là z. Theo đề bài ta có :

x2 + y2 + z2 = 8125

Mà \(y=\frac{2}{5}x\)=> \(5y=2x\)=> \(\frac{x}{5}=\frac{y}{2}\)(1)

\(y=\frac{3}{4}z\)=> 4y = 3z => \(\frac{y}{3}=\frac{z}{4}\)(2)

Từ (1) và (2) => \(\frac{x}{5}=\frac{y}{2};\frac{y}{3}=\frac{z}{4}\)

+) \(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)

+) \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{6}=\frac{z}{8}\)

=> \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}\)

=> \(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}=\frac{x^2+y^2+z^2}{15^2+6^2+8^2}=\frac{8125}{325}=25=5^2\)

=> x2 = 52 . 152 = 752 => x = \(\pm\)75

y2 = 52 . 62 = 302 => y = \(\pm\)30

z2 = 52 . 82 = 402 => z = \(\pm\)40

Bài 2 tự làm

28 tháng 6 2016

a) \(\frac{3}{5}\cdot\frac{13}{46}-\frac{1}{10}\cdot\frac{16}{23}=\frac{39-16}{10\cdot23}=\frac{1}{10}\)

b) \(\frac{3}{7}\cdot\frac{9}{26}-\frac{1}{14}\cdot\frac{1}{13}=\frac{27-1}{14\cdot13}=\frac{2\cdot13}{2\cdot7\cdot13}=\frac{1}{7}\)