K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: f(-1)=-03

f(0)=-2

b: f(x)=3

=>x-2=3

hay x=5

11 tháng 1 2022

nêu rõ cách giải đc k bạn

7 tháng 9 2018

\(\frac{x-1}{4}=\frac{2x+1}{5}\)

\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)

\(\Rightarrow5x-5=8x+4\)

\(\Rightarrow5x-8x=4+5\)

\(\Rightarrow-3x=9\)

\(\Rightarrow x=-3\)

vậy_

\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)

\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)

\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)

\(\Rightarrow7x=1\)

\(\Rightarrow x=\frac{1}{7}\)

vậy_

19 tháng 7 2019

b) Để g(x) có nghiệm 

\(\Leftrightarrow\left(x-1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2-3x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)

Vậy \(x\in\left\{1;\frac{2}{3}\right\}\)là nghiệm của đa thức g(x)

19 tháng 7 2019

c) Để k(x) có nghiệm

\(\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow x^2+x-4x-4=0\)

\(\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}}\)

Vậy \(x\in\left\{-1;4\right\}\)là nghiệm của đa thức

a: \(\widehat{P}=180^0-45^0-35^0=100^0\)

b: Số đo góc ngoài tại đỉnh N là:

\(\widehat{P}+\widehat{M}=100^0+45^0=145^0\)

5 tháng 5 2018

\(xy+3x-y=6\)

=> \(xy+3x-y-3=3\)

=> \(\left(xy+3x\right)-\left(y+3\right)=3\)

=> \(x\left(y+3\right)-\left(y+3\right)=3\)

=> \(\left(y+3\right)\left(x-1\right)=3\)

Mà x, y nguyên

=> \(x-1\)và \(y+3\)là số nguyên

=> \(\hept{\begin{cases}x-1=1\\y+3=3\end{cases}}\)\(\hept{\begin{cases}x-1=3\\y+3=1\end{cases}}\)và \(\hept{\begin{cases}x-1=-1\\y+3=-3\end{cases}}\)

=> \(\hept{\begin{cases}x=2\\y=0\end{cases}}\)\(\hept{\begin{cases}x=4\\y=-2\end{cases}}\)và \(\hept{\begin{cases}x=0\\y=-6\end{cases}}\)

Vậy cặp số nguyên (x;y) thỏa mãn là (2;0), (4;-2) và (0;-6)

13 tháng 12 2021

\(\Leftrightarrow\left|x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}x=5+1=6\\x=-5+1=-4\end{matrix}\right.\)

\(6-2\left|1+3x\right|\le6\)'

Max \(A=6\Leftrightarrow1+3x=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=\frac{-1}{3}\)

\(\left|x-2\right|+\left|x-5\right|\ge0\)

Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

15 tháng 8 2016

A= 6-2|1+3x|

Amax khi và chỉ khi 2-/1+3x/min.Vì /1+3x/luôn lớn hơn hoạc bằng 0 mà 2/1-3x/min khi /1-3x/min.

=>để 2/1-3x/min thì /1-3x/=0 khi đó thì 2/1-3x/=0.A= 6-2|1+3x|=6-0=6

Vậy Amax= 6