Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)
\(\Rightarrow5x-5=8x+4\)
\(\Rightarrow5x-8x=4+5\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
vậy_
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)
\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
vậy_
b) Để g(x) có nghiệm
\(\Leftrightarrow\left(x-1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2-3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{1;\frac{2}{3}\right\}\)là nghiệm của đa thức g(x)
c) Để k(x) có nghiệm
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2+x-4x-4=0\)
\(\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}}\)
Vậy \(x\in\left\{-1;4\right\}\)là nghiệm của đa thức
a: \(\widehat{P}=180^0-45^0-35^0=100^0\)
b: Số đo góc ngoài tại đỉnh N là:
\(\widehat{P}+\widehat{M}=100^0+45^0=145^0\)
\(xy+3x-y=6\)
=> \(xy+3x-y-3=3\)
=> \(\left(xy+3x\right)-\left(y+3\right)=3\)
=> \(x\left(y+3\right)-\left(y+3\right)=3\)
=> \(\left(y+3\right)\left(x-1\right)=3\)
Mà x, y nguyên
=> \(x-1\)và \(y+3\)là số nguyên
=> \(\hept{\begin{cases}x-1=1\\y+3=3\end{cases}}\); \(\hept{\begin{cases}x-1=3\\y+3=1\end{cases}}\)và \(\hept{\begin{cases}x-1=-1\\y+3=-3\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\y=0\end{cases}}\); \(\hept{\begin{cases}x=4\\y=-2\end{cases}}\)và \(\hept{\begin{cases}x=0\\y=-6\end{cases}}\)
Vậy cặp số nguyên (x;y) thỏa mãn là (2;0), (4;-2) và (0;-6)
\(\Leftrightarrow\left|x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}x=5+1=6\\x=-5+1=-4\end{matrix}\right.\)
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)