\(\sqrt{x+3}-\sqrt{2x-1}=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Answer:

\(\sqrt{x+3}=1+\sqrt{\left(2x-1\right)}\left(x\ge\frac{1}{2}\right)\)

\(\Leftrightarrow x+3=1+2x-1+2\sqrt{\left(2x-1\right)}\)

\(\Leftrightarrow3-x=2\sqrt{\left(2x-1\right)}\)

\(\Leftrightarrow9-6x+x^2=8x-4\)

\(\Leftrightarrow x^2-14x+13=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=13\text{(Loại)}\end{cases}}\)

2 tháng 10 2020

đk: \(1\le x\le3\)

Ta có: \(\sqrt{x-1}+\sqrt{3-x}=7\)

\(\Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(3-x\right)}+3-x=49\)

\(\Leftrightarrow2\sqrt{-x^2+4x-3}=47\)

\(\Leftrightarrow4\left(-x^2+4x-3\right)=2209\)

\(\Leftrightarrow4x^2-16x+2212=0\)

\(\Leftrightarrow x^2-4x+553=0\)

\(\Leftrightarrow\left(x-2\right)^2=-549\) (vô lý)

=> PT vô nghiệm

30 tháng 12 2015

Đặt \(a=\sqrt{2x+1},b=\sqrt{1+\sqrt{x+3}}\) thì

\(a^2-1+a=b^2-1+b\Leftrightarrow a^2-b^2+a-b=0\Leftrightarrow(a-b)(a+b+1)=0\Leftrightarrow a=b\)

Vậy

\(\sqrt{2x+1}=\sqrt{1+\sqrt{x+3}}\Leftrightarrow 2x=\sqrt{x+3}\)

29 tháng 12 2015

khó nhỉ

15 tháng 12 2016

1) ĐK: \(x\ge\frac{3}{2}\)

pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)

\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)

\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)

\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)

\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)

15 tháng 12 2016

2) ĐK: \(2\le x\le4\)

pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)

\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)

\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)

NV
11 tháng 7 2020

d/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x^2-4+1-\sqrt{x-1}+2-\sqrt{2x}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\frac{2-x}{1+\sqrt{x-1}}+\frac{2\left(2-x\right)}{2+\sqrt{2x}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{1}{1+\sqrt{x-1}}-\frac{2}{2+\sqrt{2x}}\right)=0\)

\(\Leftrightarrow x=2\)

(do \(x\ge1\Rightarrow\left\{{}\begin{matrix}x+2\ge3\\\frac{1}{1+\sqrt{x-1}}\le1\\\frac{2}{2+\sqrt{2x}}< 1\end{matrix}\right.\) \(\Rightarrow\) ngoặc phía sau luôn dương)

NV
11 tháng 7 2020

c/

\(\Leftrightarrow2\left(x^2+1\right)-\left(4x-1\right)\sqrt{x^2+1}+2x-1=0\)

Đặt \(\sqrt{x^2+1}=t\ge1\)

\(2t^2-\left(4x-1\right)t+2x-1=0\)

\(\Delta=\left(4x-1\right)^2-8\left(2x-1\right)=16x^2-24x+9=\left(4x-3\right)^2\)

Phương trình có 2 nghiệm: \(\left[{}\begin{matrix}t=\frac{4x-1-\left(4x-3\right)}{4}=\frac{1}{2}\left(l\right)\\t=\frac{4x-1+4x-3}{4}=2x-1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x-1\) (\(x\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+1=4x^2-4x+1\)

\(\Leftrightarrow3x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)