Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự vẽ ( ảnh ảo )
b.Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{8}{OA'}=\dfrac{10}{OA'+10}\)
\(\Leftrightarrow OA'=d'=40\left(cm\right)\)
Thế \(OA'=40\) vào (1) \(\Leftrightarrow\dfrac{8}{40}=\dfrac{1}{A'B'}\)
\(\Leftrightarrow A'B'=h'=5\left(cm\right)\)
a) dựng ảnh A'B' của AB qua thấu kính hội tụ
sử dung 2 trong 3 tia sáng đặc biêt
tia (1) : từ A kẻ đường thẳng đi qua quang tâm O cho tia sáng truyền thẳng
tia (2): từ A kẻ đường thẳng song song với trục chính của thấu kính cho tia sáng đi qua tiêu điểm ảnh (F') của thấu kính
giao của 2 tia tại A'
từ A' kẻ đường thẳng vuông góc với trục chính tại B'
b) ΔOAB∞ΔOA′B′(g.g)⇒OA/OA'=AB/A′B′⇔d/d′=AB/A′B′(1)
mà:
ΔOIF′∞ΔA′B′F′(g.g)⇒OI/A′B′=OF′/F′A′⇔AB/A′B′=f/d′−f(2)
từ (1) và (2) ta có:
d/d′=f/d′−f⇔24/d′=12/d′−12⇒d′=24cm
độ cao của ảnh:
A′B/′AB=d′/d⇒A′/B′=2.24/24=2cm
Chúc bn học tốt
Tóm tắt:
AB = h = 1cm
OF = OF' = f = 15cm
OA = d = 30cm
a) OA' = d' = ?
A'B' = h' = ?
Giải:
\(\Delta ABF\sim\Delta OIF\)
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\)
\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{30-15}{15}\Rightarrow A'B'=1cm\)
\(\Delta OAB\sim\Delta OA'B'\)
\(\Rightarrow\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\Leftrightarrow\dfrac{30}{OA'}=\dfrac{1}{1}\Rightarrow OA'=30cm\)
\(\left(1\right)\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{A'B'}\) ( do \(OI=AB\) )
mik nhầm á bạn
a. Bạn tự vẽ ( ảnh ảo )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{OA'}\) ( do OI = OA ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{5}{OA'}=\dfrac{8}{OA'+8}\)
\(\Leftrightarrow OA'=\dfrac{40}{3}\left(cm\right)\)
Thế \(OA'=\dfrac{40}{3}\) vào \(\left(1\right)\Leftrightarrow\dfrac{2}{A'B'}=5:\dfrac{40}{3}\)
\(\Leftrightarrow A'B'=\dfrac{16}{3}\left(cm\right)\)
Ta có:
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{15}{OA'}\left(1\right)\)
\(\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}=\dfrac{OF'}{OA'-OF'}=\dfrac{30}{OA'-30}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{15}{OA'}=\dfrac{30}{OA'-30}\)
\(\Leftrightarrow15\left(OA'-30\right)=30OA'\)
\(\Leftrightarrow15OA'-450=30OA'\)
\(\Leftrightarrow-450=30OA'-15OA'\)
\(\Leftrightarrow-450=15OA'\)
\(\Leftrightarrow OA'=\dfrac{-450}{15}=-30\left(cm\right)\)
Vậy khoảng cách từ ảnh đến thấu kính là: -30cm
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{24}+\dfrac{1}{d'}\Rightarrow d'=24cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{1}{h'}=\dfrac{24}{24}\Rightarrow h'=1cm\)