K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-55^0=35^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{16}{sin55}\simeq19,53\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq11,2\left(cm\right)\)

b: ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\) và \(BM\cdot BA=BH^2\)

=>\(BM=\dfrac{BH^2}{BA}\)

ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\) và \(CN\cdot CA=CH^2\)

=>\(CN=\dfrac{CH^2}{CA}\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

c: XétΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC;AC^2=CH\cdot BC\)\(AH^2=HB\cdot HC;AB\cdot AC=BC\cdot HA\)

\(BM\cdot CN\cdot BC\)

\(=\dfrac{CH^2}{CA}\cdot\dfrac{BH^2}{BA}\cdot BC\)

\(=\dfrac{AH^4}{AC\cdot AB}\cdot BC\)

\(=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)

21 tháng 2 2022

(p) đi qua A(-1;2) 

=> 2 = (m - 2).(-1)2 

<=> m - 2 = 2

<=> m = 4

Vậy m = 4 thì (p) đi qua A(-1 ; 2) 

21 tháng 2 2022

Gọi số học sinh nam x ; số học sinh nữ y 

Theo đề ra => HPT : \(\left\{{}\begin{matrix}x+y=24\\2x+3y=62\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=14\end{matrix}\right.\)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>BC=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\)

b: Xét ΔABE vuông tại A có AI là đường cao

nên \(BI\cdot BE=BA^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\)

=>\(BI\cdot BE=BH\cdot BC=2\cdot BH\cdot BM\)

c: 

3:

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

=>góc CED=góc CBA

xy là tiếp tuyến

=>góc xCA=góc ABC

=>góc xCA=góc DEC

=>DE//xy

=>DE vuông góc OC

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Vì $CF, BE$ là đường cao của tam giác $ABC$ nên:

$\widehat{AFH}=\widehat{AEH}=90^0$

Tứ giác $AEHF$ có tổng hai góc đối nhau $\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Vì $AFHE$ nội tiếp nên $\widehat{F_2}=\widehat{H_2}=\widehat{H_1}$

$\widehat{F_1}=\widehat{A_1}=90^0-\widehat{C}=\widehat{B_1}$

Áp dụng công thức $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:

$\frac{HM}{AM}=\frac{S_{FMH}}{S_{AFM}}=\frac{FH.\sin F_1}{FA.\sin F_2}=\frac{FH}{FA}.\frac{\sin B_1}{\sin H_1}$

$=\tan A_2.\sin B_1.\frac{1}{\sin H_1}$

$=\frac{BK}{AK}.\frac{HK}{BH}.\frac{BH}{BK}$

$=\frac{HK}{AK}$

$\Rightarrow HM.AK=HK.AM$

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ: