Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2941}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{1943}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2941}}{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{1943}}\)
\(=\dfrac{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2941}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{1943}}.\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{1943}}{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2941}}\)
\(=\dfrac{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2941}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{1943}\right)}.\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{1943}\right)}{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2941}\right)}\)
\(=\dfrac{5}{3}.\dfrac{2}{4}=\dfrac{10}{12}=\dfrac{5}{6}\)
Vì đề bài không yêu cầu tính nên bn có thể không tính ra như mk cux đc!
\(A=\frac{2.\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}{3.\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}:\frac{4\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}{5.\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}=\frac{2}{3}:\frac{4}{5}=\frac{2}{3}.\frac{5}{4}=\frac{5}{6}\)
Xin lỗi nha, mình chỉ biết làm bài này nhõn bằng cách qui đồng nhưng số lớn lắm!
đặt \(S=\frac{2-\frac{2}{19}+\frac{2}{43}-\frac{2}{1943}}{3-\frac{3}{19}+\frac{3}{43}-\frac{3}{1943}};P=\frac{4-\frac{4}{29}+\frac{4}{41}-\frac{4}{2941}}{5-\frac{5}{29}+\frac{5}{41}-\frac{5}{2941}}\)
\(S=\frac{2-\frac{2}{19}+\frac{2}{43}-\frac{2}{1943}}{3-\frac{3}{19}+\frac{3}{43}-\frac{3}{1943}}=\frac{2\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}{3\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}=\frac{2}{3}\)
\(P=\frac{4-\frac{4}{29}+\frac{4}{41}-\frac{4}{2941}}{5-\frac{5}{29}+\frac{5}{41}-\frac{5}{2941}}=\frac{4\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}{5\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}=\frac{4}{5}\)
\(\Rightarrow A=S:P=\frac{2}{3}:\frac{4}{5}=\frac{2}{3}.\frac{5}{4}=\frac{10}{12}=\frac{5}{6}\)
vậy A=5/6
Ta có 2-2/19+2/43-2/1943=2.1-2.1/19+2.1/43-2.1/1943=2(1-1/19+1/43-1/1943)
Tương tự với 3 biểu thức còn lại , ta lại có : A=2/3:4/5=2/3.5/4=10/12=5/6
\(B=\frac{2-\frac{2}{19}+\frac{2}{43}-\frac{2}{1943}}{3-\frac{3}{19}+\frac{3}{43}-\frac{3}{1943}}:\frac{4-\frac{4}{29}+\frac{4}{41}-\frac{4}{2941}}{5-\frac{5}{29}+\frac{5}{41}-\frac{5}{2941}}\)
\(B=\frac{2.\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}{3.\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}:\frac{4.\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}{5.\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}\)
\(B=\frac{2}{3}:\frac{4}{5}\)
\(B=\frac{5}{6}\)
\(A=\frac{2-\frac{2}{19}+\frac{2}{43}-\frac{2}{1995}}{3-\frac{3}{19}+\frac{3}{43}-\frac{3}{1995}}:\frac{4-\frac{4}{29}+\frac{4}{41}-\frac{4}{2941}}{5-\frac{5}{29}+\frac{5}{41}-\frac{5}{2941}}\)
\(\Rightarrow A=\frac{2\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1995}\right)}{3\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1995}\right)}:\frac{4\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}{5\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}\)
\(\Rightarrow A=\frac{2}{3}:\frac{4}{5}\)
\(\Rightarrow A=\frac{2}{3}.\frac{5}{4}\)
\(\Rightarrow A=\frac{10}{12}=\frac{5}{6}\)
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))
\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)
b. \(\frac{2-\frac{2}{19}+\frac{2}{43}-\frac{2}{1943}}{3-\frac{3}{19}+\frac{3}{43}-\frac{3}{1943}}:\frac{4-\frac{4}{29}+\frac{4}{41}-\frac{4}{2941}}{5-\frac{5}{29}+\frac{5}{41}-\frac{5}{2941}}=\frac{2}{3}:\frac{4}{5}=\frac{5}{6}\)
a) 1+2-3-4+...-299-300+301+302
= (1+2-3) + (-4+5+6-7) +...+ (298-299-300+301) +302
= 0+ 0 + 0 +...+ 0 + 302
= 302