K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn

NM
11 tháng 2 2021

ta có

\(\hept{\begin{cases}xy\left(x-y\right)^2=25\\\sqrt{x^2-xy}+\sqrt{xy-y^2}=\frac{9}{2}\end{cases}}\)

từ \(\left(\sqrt{x^2-xy}+\sqrt{xy-y^2}\right)^2=\frac{81}{4}\Leftrightarrow x^2-y^2+2\sqrt{xy.\left(x-y\right)^2}=\frac{81}{4}\)

\(\Leftrightarrow x^2-y^2+2\sqrt{25}=\frac{81}{4}\Leftrightarrow x^2-y^2=\frac{41}{4}\Rightarrow x^2=y^2+\frac{41}{4}\)

\(\Rightarrow\left(\sqrt{x^2-xy}+\sqrt{xy-y^2}\right)=\frac{9}{2}\Leftrightarrow\sqrt{\frac{41}{4}-\left(xy-y^2\right)}+\sqrt{xy-y^2}=\frac{9}{2}\)

\(\Rightarrow xy-y^2=4\)vậy ta có \(\hept{\begin{cases}xy-y^2=4\\x^2-y^2=\frac{41}{4}\end{cases}}\Rightarrow16\left(x^2-y^2\right)=41\left(xy-y^2\right)\)

\(\Rightarrow\orbr{\begin{cases}x=y\\x=\frac{25}{16}y\end{cases}}\)mà \(x^2=y^2+\frac{41}{4}\Rightarrow\left(\frac{25}{16}y\right)^2=y^2+\frac{41}{4}\Rightarrow y=\pm\frac{8}{3}\Rightarrow x=\pm\frac{25}{6}\)

thay lại hệ để tìm nghiệm thỏa mãn đk căn thức là xong nhé

11 tháng 2 2021

\(ĐK:x^2-xy\ge0;xy-y^2\ge0\)

Ta viết hệ phương trình về dạng: \(\hept{\begin{cases}x\left(x-y\right).y\left(x-y\right)=25\\\sqrt{x\left(x-y\right)}+\sqrt{y\left(x-y\right)}=\frac{9}{2}\end{cases}}\)

Đặt \(\sqrt{x\left(x-y\right)}=u,\sqrt{y\left(x-y\right)}=v\left(u,v>0\right)\)thì hệ trở thành: \(\hept{\begin{cases}u^2v^2=25\\u+v=\frac{9}{2}\end{cases}}\)

* Xét uv = 5 thì u, v là nghiệm của phương trình \(s^2-\frac{9}{2}s+5=0\Leftrightarrow\orbr{\begin{cases}s=\frac{5}{2}\\s=2\end{cases}}\)

     +) \(u=\frac{5}{2},v=2\Rightarrow\hept{\begin{cases}x\left(x-y\right)=\frac{25}{4}\\y\left(x-y\right)=4\end{cases}}\Leftrightarrow\left(x-y\right)^2=\frac{9}{4}\)\(\Leftrightarrow\orbr{\begin{cases}x-y=\frac{3}{2}\Rightarrow\left(x,y\right)=\left(\frac{25}{6},\frac{8}{3}\right)\\x-y=-\frac{3}{2}\Rightarrow\left(x,y\right)=\left(-\frac{25}{6},-\frac{8}{3}\right)\end{cases}}\)

     +) \(u=2,v=\frac{5}{2}\Rightarrow\hept{\begin{cases}x\left(x-y\right)=4\\y\left(x-y\right)=\frac{25}{4}\end{cases}}\Leftrightarrow\left(x-y\right)^2=\frac{-9}{4}\left(L\right)\)

* Xét uv = -5 thì u, v là nghiệm của phương trình \(r^2-\frac{9}{2}r-5=0\Leftrightarrow\orbr{\begin{cases}r=\frac{9+\sqrt{161}}{4}\\r=\frac{9-\sqrt{161}}{4}\end{cases}}\)(loại vì có 1 nghiệm là số âm)

Vậy hệ có 2 nghiệm \(\left(x,y\right)=\left\{\left(\frac{25}{6},\frac{8}{3}\right);\left(\frac{-25}{6},\frac{-8}{3}\right)\right\}\)
24 tháng 1 2017

(Bình thường mà)

Tính \(\Delta_x=\left(2012+y\right)^2-4\left(2013+y\right)=\left(y+2010\right)^2-8\)

Để pt có nghiệm nguyên thì trước hết \(\Delta_x\) chính phương.

Mà bản thân số \(\left(y+2010\right)^2\) đã chính phương nên ta chỉ cần tìm 2 số chính phương lệch nhau 8 đơn vị.

Đó là số \(1\) và \(9\).

\(\left(y+2010\right)^2=9\) vì đây là số chính phương lớn hơn. Đến đây bạn tìm được \(y\) và sẽ suy ra \(x\).

26 tháng 1 2017

Mình chỉ có thắc mắc là tại sao \(\Delta_x\) phải là chính phương thì nghiệm nguyên thôi?