K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(pt\Leftrightarrow5x-1=9\Leftrightarrow5x=10\Leftrightarrow x=2\left(tm\right)\)

16 tháng 11 2021

\(\sqrt{5x-1}=3\)
\(\Leftrightarrow5x-1=9\)

\(\Leftrightarrow5x=10\)

\(\Leftrightarrow x=2\)

 

16 tháng 11 2021

\(VT=\sqrt{6+\sqrt{35}}.\sqrt{6-\sqrt{35}}=\sqrt{\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)}=\sqrt{36-35}=\sqrt{1}=1=VP\left(đpcm\right)\)

23 tháng 9 2021

Chữ đẹp quá bạn ơi, không hiểu gì hết 

23 tháng 9 2021

Đây để em gửi lại

18 tháng 10 2021

Bài III:

1: Ta có: \(\sqrt{x-3}=5\)

\(\Leftrightarrow x-3=25\)

hay x=28

2: Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}-5}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}-6=\sqrt{x}-5\)

\(\Leftrightarrow2\sqrt{x}=1\)

hay \(x=\dfrac{1}{4}\)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

hay \(\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)

8 tháng 2 2022

1, \(\left\{{}\begin{matrix}4x+2y=24\\7x-2y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=55\\y=12-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)

2, thiếu đề 

4, \(\left\{{}\begin{matrix}4x-y-24=10x-4y\\3y-2=4-x+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\-6x-12y=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15y=60\\x=6-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)

20 tháng 10 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-x-2}-\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x^2-x-2}=\sqrt{x-2}\\ \Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

20 tháng 10 2021

\(a,ĐK:x\ge2\\ PT\Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\\ b,ĐK:\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-1}=x^2-1\\ \Leftrightarrow x^2-1=\left(x^2-1\right)^2\\ \Leftrightarrow\left(x^2-1\right)\left(x^2-1-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\\x=\sqrt{2}\left(tm\right)\\x=-\sqrt{2}\left(tm\right)\end{matrix}\right.\)

\(c,ĐK:\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-x}=-\sqrt{x^2+x-2}\\ \Leftrightarrow x^2-x=x^2+x-2\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\left(tm\right)\)

18 tháng 12 2021

a: Xét tứ giác EOBM có 

\(\widehat{OBM}+\widehat{OEM}=180^0\)

Do đó: EOBM là tứ giác nội tiếp