K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2021

Ta có : \(C=A\div B=\frac{x-1}{x^2}\div\frac{x-1}{2x+1}=\frac{2x+1}{x^2}\)

\(C\ge-1\)

\(\Leftrightarrow\frac{2x+1}{x^2}\ge-1\)

\(\Leftrightarrow\frac{2x+1}{x^2}+1\ge0\)

\(\Leftrightarrow\frac{2x+1+x^2}{x^2}\ge0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2}\ge0\)

\(\Leftrightarrow\left(\frac{x+1}{x}\right)^2\ge0\)( luôn đúng )

\(\Rightarrow C\ge-1\)(đpcm)

Bài 7:

Ta có: ABCD là hình thang

nên \(\widehat{A}+\widehat{D}=180^0\)

\(\Leftrightarrow3\cdot\widehat{D}=180^0\)

\(\Leftrightarrow\widehat{D}=60^0\)

\(\Leftrightarrow\widehat{A}=120^0\)

Ta có: ABCD là hình thang

\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\widehat{B}=200^0\)

\(\Leftrightarrow\widehat{B}=100^0\)

\(\Leftrightarrow\widehat{C}=80^0\)

28 tháng 8 2016

\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)

Vậy A > 0

28 tháng 8 2016

\(A=x^2+x+1\)

Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow x^2+1+1\ge1\)

Vậy: \(A>0\)

17 tháng 8 2018

đặt M là n^3 -9n^2+2n.

TH1 : n có dạng 2k => M chia hết cho 2 (bạn  tự cm)

TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n

=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)

Xét n có dạng 3k => M chia hết cho 3

Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3

Tương tự bạn xét n =3k+2....

=> M chia hết cho 3 vs mọi n (2)

Từ (1) (2) => M chia hết cho 6

17 tháng 8 2018

còn cách lm khác k bạn?

18 tháng 4 2019

Trên đây nó ko cho đăng ảnh,mn chịu khó nhập link này vào nha:https://i.imgur.com/xQNntGH.png

4.2:

a: x^2-x+1=x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

=>x^2-x+1 ko có nghiệm

b: 3x-x^2-4

=-(x^2-3x+4)

=-(x^2-3x+9/4+7/4)

=-(x-3/2)^2-7/4<=-7/4<0 với mọi x

=>3x-x^2-4 ko có nghiệm

5:

a: x^2+y^2=25

x^2-y^2=7

=>x^2=(25+7)/2=16 và y^2=16-7=9

x^4+y^4=(x^2)^2+(y^2)^2

=16^2+9^2

=256+81

=337

b: x^2+y^2=(x+y)^2-2xy

=1^2-2*(-6)

=1+12=13

x^3+y^3=(x+y)^3-3xy(x+y)

=1^3-3*1*(-6)

=1+18=19

 

8 tháng 8 2023

mik cảm ơn bạn nhiều vì đã giúp mik

 

NV
22 tháng 3 2023

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

NV
22 tháng 3 2023

loading...

18 tháng 7 2021

Gọi số sản phẩm àm 2 ng công nhân được giao là x (x∈N*, sản phẩm)

Thời gian hoàn thành công việc của người thứ nhất là: \(\dfrac{x}{40}\left(h\right)\)

Thời gian hoàn thành công việc của ngươi thứ hai là: \(\dfrac{x}{50}\left(h\right)\)

Vì ng thứ nhất hoàn thành công việc chậm hơn người thứ hai 2 giờ nên ta có PT:

 \(\dfrac{x}{40}-\dfrac{x}{50}=2\)

\(50x-40x=4000\)

\(10x=4000\)

\(x=400\)

Vậy số sản phẩm mỗi công nhân được giao là 400 (sản phẩm)