K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
a.

\(A=\left[\frac{1}{\sqrt{x}(\sqrt{x}+2)}-\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}\right]:\frac{1-\sqrt{x}}{(\sqrt{x}+2)^2}\)

\(=\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}.\frac{(\sqrt{x}+2)^2}{1-\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b.

$A=\frac{5}{2}\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{2}$

$\Leftrightarrow 1+\frac{2}{\sqrt{x}}=\frac{5}{2}$

$\Leftrightarrow \frac{2}{\sqrt{x}}=\frac{3}{2}$

$\Leftrightarrow \sqrt{x}=\frac{4}{3}$

$\Leftrightarrow x=\frac{16}{9}$ (thỏa đkxđ)

7 tháng 1 2022

post vừa rồi bị lỗi ảnh nên em post lại ạ ...

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

ĐKXĐ: x>=0; x<>9

\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

6 tháng 3 2022

lỗi

6 tháng 3 2022

đăng lại đi

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Bài 4:

a. ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ x-1\neq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 3\end{matrix}\right.\)

b. \(B=\frac{x-3}{\frac{x-1-2}{\sqrt{x-1}+\sqrt{2}}}=\sqrt{x-1}+\sqrt{2}\)

\(x=4(2-\sqrt{3})\Rightarrow x-1=7-4\sqrt{3}=(2-\sqrt{3})^2\)

\(\Rightarrow \sqrt{x-1}=2-\sqrt{3}\Rightarrow B=\sqrt{x-1}+\sqrt{2}=2-\sqrt{3}+\sqrt{2}\)

c.

$\sqrt{x-1}\geq 0$ với mọi $x\geq 1; x\neq 3$

$\Rightarrow B=\sqrt{x-1}+\sqrt{2}\geq \sqrt{2}$

Vậy $B_{\min}=\sqrt{2}$ khi $x=1$

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Bài 5:
\(C=\frac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})}{\sqrt{xy}}\)

\(=\frac{(\sqrt{x}+\sqrt{y})^2}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})=(\sqrt{x}+\sqrt{y})-(\sqrt{x}-\sqrt{y})\)

\(=2\sqrt{y}\) vẫn phụ thuộc vào biến $y$ bạn ạ. Bạn xem lại đề.

22 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

   `=>(m+1)^2-m^2+2m-3 > 0`

`<=>m^2+2m+1-m^2+2m-3 > 0`

`<=>m > 1/2`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`

Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`

`=>1-4x_1.x_2+3(x_1.x_2)^2=0`

`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`

`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`

`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`

  `=>` Không có `m` thỏa mãn.

Gọi vận tốc của ô tô là x

=>Vận tốc xe máy là x-10

Theo đề, ta có: 120/(x-10)-120/x=1

=>(120x-120x+1200)/x(x-10)=1

=>x^2-10x=1200

=>x^2-10x-1200=0

=>x=40

12 tháng 10 2023

9:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(P=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

b: \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>=1>0\)

2>0

Do đó: \(P=\dfrac{2}{x+\sqrt{x}+1}>0\forall x\ne1\)

NV
25 tháng 12 2020

\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)

\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)

\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)

28 tháng 12 2020

Dạ em cảm ơn ạ