Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp:
Khái niệm: Hình đa diện gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:
a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung.
b) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác.
Hình đa diện chia không gian thành hai phần (phần bên trong và phần bên ngoài). Hình đa diện cùng với phần bên trong của nó gọi là khối đa diện.
Cách giải:
Theo khái niệm hình đa diện ta chỉ thấy hình 4 không là hình đa diện.
Đáp án là A
Theo khái niệm:
Hình đa diện gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:
a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung.
b) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác.
Theo khái niệm trên thì hình 1, hình 2, hình 3 là các hình đa diện; hình 4 không phải hình đa diện ( Có cạnh là cạnh chung của 3 đa giác).
Đáp án A
Số tam giác tạo bởi các đỉnh của đa giác là C 7 3 = 35
Số tam giác có 2 cạnh là 2 cạnh của đa giác là 7
Số tam giác có 1 cạnh là cạnh của đa giác là 7.3 = 21
Vậy số tam giác tạo bởi đỉnh của đa giác và không có cạnh trùng với cạnh của đa giác là 35 - (7 + 21) = 7 tam giác.
Chọn B
Phương pháp:
Chia khối lập phương, nhận xét các khối tạo thành và tính thể tích của chúng
Cách giải:
Chia khối lập phương ABC.A’B’C’ bởi mặt phẳng (AB’D’) và (C’BD) ta được:
+) Chóp A.A’B’D’
+) Chóp C’.BCD
+) Khối bát diện ABD.B’C’D’
Ta có
Các khối A.A’B’D’ và C’.BCD không phải là chóp tam giác đều và khối bắt diện ABD.B’C’D’ không phải là khói bát diện đều
Do đó chỉ có mệnh đề III đúng
Chọn đáp án D
Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD:
FOR REVIEW |
Tam giác cân có một góc bằng 60 ° thì là tam giác đều. |
Đáp án C.
Hình a,c,d là hình đa diện còn hình b không phải vì nó vi phạm điều kiện, mỗi cạnh chỉ là giao của 2 mặt.