Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔABF có
BE=BF
AB chung
AE=AF
Do đó: ΔABE=ΔABF
b: Xét ΔAEF và ΔBEF có
AE=BE
EF chung
AF=BF
Do đó: ΔAEF=ΔBEF
c: Xét tứ giác AEBF có
AE=BF
BE=AF
Do đó: AEBF là hình bình hành
=>AE//BF; AF//BE
\(M=\frac{2.2^{12}.3^6+2^2.2^9.3^9}{2^5.2^7.3^7+2^7.2^3.3^{10}}\)
\(=\frac{2^{11}.3^6\left(2^2+3^3\right)}{2^{10}.3^7\left(2^2+3^3\right)}\)
\(=\frac{2}{3}\)
\(M=\frac{2.\left(2^3\right)^4.\left(3^3\right)^2+2^2.\left(2.3\right)^9}{2^5.\left(2.3\right)^7+2^7.2^3.\left(3^2\right)^5}\)
\(M=\frac{2.2^{12}.3^6+2^2.2^9.3^9}{2^5.2^7.3^7+2^7.2^3.3^{10}}\)
\(M=\frac{2^{13}.3^6+2^{11}.3^9}{2^{12}.3^7+2^{10}.3^{10}}\)
\(M=\frac{2^{11}.3^6\left(2^2.1+1.3^3\right)}{2^{10}.3^7\left(2^2.1+1.3^3\right)}\)
\(M=\frac{2.31}{3.31}\)
\(M=\frac{2}{3}\)
Study well
1) Vì a⊥d , b⊥d ⇒ a // b
⇒\(\widehat{A_1}=\widehat{B}=80^o\) (ở vị trí so le trong)
⇒\(\widehat{A_3}=\widehat{B}=80^o\)(ở vị trí đồng vị)
Do \(\widehat{A_2}+\widehat{B}=180^o\)
(hai góc trong cùng phía)
Thay số:\(\widehat{A_2}+80^o=180^o\)
⇒\(\widehat{A_2}=100^o\)
a) Ta có: \(\widehat{BAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{xAC}=100^0\)
\(\Leftrightarrow\widehat{xAt}=\widehat{CAt}=\dfrac{\widehat{xAC}}{2}=\dfrac{100^0}{2}=50^0\)
b) Ta có: \(\widehat{CAt}=\widehat{BCA}\left(=50^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên At//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Vì BC và Cx là 2 tia đối nên \(\widehat{BCA}\) và \(\widehat{ACx}\) là 2 góc kề bù
\(\Rightarrow\widehat{ACB}+\widehat{ACx}=180^o\)
\(40^o+\widehat{ACx}=180^o\)
\(\widehat{ACx}=140^o\)
b) Ta có:\(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng 3 góc trong 1 tam giác)
\(40^o+\widehat{ABC}+70^o=180^o\)
\(\widehat{ABC}=70^o\)(1)
Vì Oy là phân giác của \(\widehat{ACx}\) nên \(\widehat{xCy}=\dfrac{\widehat{ACx}}{2}=\dfrac{140^o}{2}=70^o\)(2)
Từ (1),(2) => \(\widehat{ABC}=\widehat{xCy}\)
c)Cặp góc đồng vị là \(\widehat{ABC}\) và \(\widehat{xCy}\)