Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A B M ^ = A N B ^ = 1 2 s đ B M ⏜
Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM
b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO
c, Chứng minh được A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác A B C ^ . Mà AO là tia phân giác B A C ^ => I là tâm đường tròn nội tiếp ∆ABC
a, Ta có AH.AO=AB^2 ( theo hệ thức lượng)
AM.AN=BC^2 (bạn xét tam giác ACM và ANC đồng dạng theo trường hợp g-g)
Mà AB=AC (t/c 2 tt cắt nhau) ===> AH.AO=AM.AN
a: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
=>AH*AO=AB^2
Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AM*AN=AB^2=AH*AO
a: Xét ΔABM và ΔANB có
\(\widehat{BAN}\) chung
\(\widehat{ABM}=\widehat{ANB}\)
Do đó: ΔABM\(\sim\)ΔANB
Suy ra: \(\dfrac{AB}{AN}=\dfrac{AM}{AB}\)
hay \(AB^2=AM\cdot AN\)
a) \(OB=OC\)nên \(O\)thuộc đường trung trực của \(BC\)
\(AB=AC\)nên \(A\)thuộc đường trung trực của \(BC\)
suy ra \(AO\)là đường trung trực của \(BC\).
b) Xét tam giác \(ABO\)vuông tại \(B\)đường cao \(BH\):
\(AB^2=AH.AO\)
Xét tam giác \(ABM\)và tam giác \(ANB\):
\(\widehat{A}\)chung
\(\widehat{ABM}=\widehat{ANB}\)
suy ra \(\Delta ABM~\Delta ANB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AN}=\frac{AM}{AB}\Rightarrow AB^2=AM.AN\)
Suy ra \(AH.AO=AM.AN\).