K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

Bài 3:

\(1,x=9\Leftrightarrow A=\dfrac{3-2}{9+3}=\dfrac{1}{12}\\ 2,P=AB=\dfrac{\sqrt{x}-2}{x+3}\cdot\dfrac{x-3\sqrt{x}+2-2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(x+3\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{x+3}\\ 3,\left(10x+30\right)P\ge x+25\\ \Leftrightarrow\dfrac{3\sqrt{x}\left(x+3\right)}{x+3}-x-25\ge0\\ \Leftrightarrow3\sqrt{x}-x-25\ge0\\ \Leftrightarrow-\left(x-3\sqrt{x}+\dfrac{9}{4}\right)-\dfrac{91}{4}\ge0\\ \Leftrightarrow-\left(\sqrt{x}-\dfrac{3}{2}\right)^2-\dfrac{91}{4}\ge0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\)

30 tháng 9 2021

\(1,\\ a,x^4-8x^2-9=0\\ \Leftrightarrow x^4+x^2-9x^2-9=0\\ \Leftrightarrow\left(x^2+1\right)\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\left(x^2+1\ge1>0\right)\\x=3\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ b,\left\{{}\begin{matrix}2\left(x-1\right)-3\left(x-3y\right)=5\\3\left(x-1\right)+5\left(x-3y\right)=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6\left(x-1\right)-9\left(x-3y\right)=15\\6\left(x-1\right)+10\left(x-3y\right)=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19\left(x-3y\right)=-19\\3\left(x-1\right)+5\left(x-3y\right)=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\3\left(x-1\right)-5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-1=-\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\-\dfrac{4}{3}-3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=-\dfrac{1}{9}\end{matrix}\right.\)

30 tháng 9 2021

5b.

Theo Bunhiacopxki:

\(\left(\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\right)^2\le\left(x+y\right)\left(\left(2x+y\right)+\left(2y+x\right)\right)=3\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\sqrt{3}\left(x+y\right)\)

\(\Rightarrow\dfrac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\dfrac{x+y}{\sqrt{3}\left(x+y\right)}=\dfrac{1}{\sqrt{3}}\)

Dấu "=" xảy ra khi x=y

a: Thay x=16 vào A, ta được:

\(A=\dfrac{4}{4-3}=4\)

b: Ta có: M=A-B

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{7}{\sqrt{x}+1}+\dfrac{12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-7\sqrt{x}+21+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-6\sqrt{x}+33}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

16 tháng 12 2021

\(ĐK:x\ge0;x\ne1\\ 1,P=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}+5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}-1}\\ 2,P< 0\Leftrightarrow\sqrt{x}-1< 0\left(2>0\right)\\ \Leftrightarrow\sqrt{x}< 1\Leftrightarrow0\le x< 1\)

16 tháng 12 2021

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a\cdot0+b=-2\\-3a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)