K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2022

\(\left\{{}\begin{matrix}x>y\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y>0\\xy=1\end{matrix}\right.\)

\(P=\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}\ge2\sqrt{\left(x-y\right)\left(\dfrac{2}{x-y}\right)}=2\sqrt{2}\Rightarrow MinP=2\sqrt{2}\)

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

NV
27 tháng 12 2020

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

28 tháng 12 2020

mk nghĩ nên đăt =t (t>=3). cho dễ làm

29 tháng 8 2018

1. Vì a,d>0 nên ta có (a-b)>=0 tương đương a^2 +b^2 >= 2ab rồi chuyển ad xong từng phân thức rồi chia là ra đpcm

4 tháng 7 2017

\(A=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

4 tháng 7 2017

đoạn lớn hơn hoặc bằng cụm 9/ (3+xy+yz+zx) ấy, làm sao để có, mình ko hiểu lắm

24 tháng 5 2021

`P=1/(x^2+y^2)+1/(xy)+4xy`

`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`

Áp dụng bunhia dạng phân thức

`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`

Mà `(x+y)^2<=1`

`=>1/(x^2+y^2)+1/(2xy)>=4`

Áp dụng cosi:

`4xy+1/(4xy)>=2`

`4xy<=(x+y)^2<=1`

`=>1/(4xy)>=1`

`=>P>=4+2+1=7`

Dấu "=" `<=>x=y=1/2`

24 tháng 5 2021

Cảm ơn ạ !

26 tháng 11 2017

https://hoc24.vn/hoi-dap/question/486195.html