Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, a/ \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy .............
b/ \(\left|x\right|=3,12\Leftrightarrow\left[{}\begin{matrix}x=3,12\\x=-3,12\end{matrix}\right.\)
Vậy ...........
c/ \(\left|x\right|=0\Leftrightarrow x=0\)
Vậy ..........
d/ \(\left|x\right|=2\dfrac{1}{7}\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\dfrac{1}{7}\\x=-2\dfrac{1}{7}\end{matrix}\right.\)
Vậy ..............
2, a/ \(\left|x\right|=2,1\Leftrightarrow\left[{}\begin{matrix}x=2,1\\x=-2,1\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x\right|=\dfrac{17}{9}\) ; \(x< 0\)
\(\Leftrightarrow x=-\dfrac{17}{9}\)
Vậy ..........
c/ \(\left|x\right|=1\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}x=1\dfrac{2}{5}\\x=-1\dfrac{2}{5}\end{matrix}\right.\)
Vậy ...........
d/ \(\left|x\right|=0,35\) ; \(x>0\Leftrightarrow x=0,35\)
3, a/ \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ...........
Các bn ơi ! 1515 là 1/5 -123-123 là -12/3 (hỗn số -1), 179179 = 17/9 và 125125 = 1 và 2/5 nhé !
1) Làm ý 2 nhé
=> x = 3 hoặc x = -3
2) Ý 2: => x = 17/9 hoặc -17 / 9 Mà x<0 => x = 17 / 9
ý 3 :
a) \(x=\pm2,1\)
b) \(x=-\dfrac{3}{4}\)
c) \(\)Không tồn tại x
d)\(x=0,35\)
a, \(\left|x\right|=2,1\)
=> \(x=\pm2,1\)
b, \(\left|x\right|=\dfrac{3}{4},x< 0\)
=> \(x=\dfrac{3}{4}\)
c, \(\left|x\right|=-1\dfrac{2}{5}\)
=> Không tồn tại x.
d, \(\left|x\right|=0,35,x>0\)
=> \(x=0,35\)
a, \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)
+,Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{1}{3}\)
+, Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow x< -\dfrac{2}{5}\)
Vậy...........
b, \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
Vì \(x+\dfrac{3}{5}< x+1\) với mọi \(x\in R\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\)
Vậy...........
c, \(\dfrac{3}{7}x-\dfrac{2}{5}x=\dfrac{-17}{35}\)
\(\Rightarrow\dfrac{1}{35}x=\dfrac{-17}{35}\)
\(\Rightarrow x=-17\)
d, \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}+\dfrac{-3}{5}x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\-\dfrac{3}{5}x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)
Vậy.........
Chúc bạn học tốt!!!
a/ \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x>\dfrac{1}{3}\)
TH2:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x< -\dfrac{2}{5}\)
Vậy \(x>\dfrac{1}{3}\) hoặc \(x< -\dfrac{2}{5}\) thì tm
b/ \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\) \(\Rightarrow-1< x< -\dfrac{3}{5}\)
TH2:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-\dfrac{3}{5}\\x< -1\end{matrix}\right.\)(vô lý)
Vậy....................
c/ \(\dfrac{3}{7}x-\dfrac{2}{5}x=-\dfrac{17}{35}\)
\(\Rightarrow\left(\dfrac{3}{7}-\dfrac{2}{5}\right)x=-\dfrac{17}{35}\)
\(\Rightarrow\dfrac{1}{35}x=-\dfrac{17}{35}\)
\(\Rightarrow x=-\dfrac{17}{35}:\dfrac{1}{35}=-17\)
Vậy.............
d/ \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}-\dfrac{3}{5}x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\\dfrac{3}{5}x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)
Vậy.....................
a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)
mà x<0
nên x=-16/5
b: \(\left|x\right|=-2.1\)
nên \(x\in\varnothing\)
c: \(\left|x-3.5\right|=5\)
=>x-3,5=5 hoặc x-3,5=-5
=>x=8,5 hoặc x=-1,5
d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>|x+3/4|=1/2
=>x+3/4=1/2 hoặc x+3/4=-1/2
=>x=-1/4 hoặc x=-5/4
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
b: 2x-3<0
=>2x<3
hay x<3/2
c: \(\left(2x-4\right)\left(9-3x\right)>0\)
=>(x-2)(x-3)<0
=>2<x<3
d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)
=>2/3x>3/4
hay x>9/8
a/ \(\left(x+1\right)\left(x-2\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)
TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)
Vậy.........
b/ \(\left(x-3\right)\left(x-4\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)
TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)
Vậy...............
c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)
\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)
Vậy...............
Để ( x + 1 ) ( x - 2 ) < 0
=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2
=> x + 1 dương x + 2 âm
Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2
a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)
b: \(\dfrac{x}{3-x}>-1\)
\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)
\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)
=>3-x>0
hay x<3
c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)
\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)
=>-17<=x<-5
d: \(\dfrac{7}{4x^2-1}\ge0\)
=>4x2-1>0
=>(2x-1)(2x+1)>0
=>x>1/2 hoặc x<-1/2
Bài 2:
a: |x|=2,1
=>x=2,1 hoặc x=-2,1
b: |x|=17/9
nên x=17/9 hoặc x=-17/9
mà x<0
nên x=-17/9
c: Ta có: \(\left|x\right|=1\dfrac{2}{5}\)
=>|x|=7/5
=>x=7/5 hoặc x=-7/5
d: |x|=0,35
=>x=0,35 hoặc x=-0,35
mà x>0
nên x=0,35