K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

NV
7 tháng 1 2021

Đặt \(\overrightarrow{PB}=x\overrightarrow{BC}\)

\(\overrightarrow{PM}=\overrightarrow{PB}+\overrightarrow{BM}=x.\overrightarrow{BC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(\overrightarrow{PN}=\overrightarrow{PC}+\overrightarrow{CN}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AC}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(=\left(x+\dfrac{1}{2}\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AB}\)

P, M, N thẳng hàng \(\Rightarrow\dfrac{x+\dfrac{1}{2}}{x}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{3}}\Rightarrow x=1\) \(\Rightarrow\overrightarrow{PB}=\overrightarrow{BC}\)

\(\Rightarrow\) B là trung điểm PC \(\Rightarrow P\left(-6;5\right)\)

Nếu bạn chưa học bài pt đường thẳng thì làm cách trên, còn học rồi thì đơn giản là thiết lập 2 pt đường thẳng BC và MN là xong

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)

9 tháng 8 2019

Hok nhanh phết đấy =))

\(\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BA}\right|\Rightarrow\sqrt{\left(x_D-x_c\right)^2+\left(y_D-y_C\right)^2}=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)

\(\Leftrightarrow\sqrt{\left(x_D-0\right)^2+\left(y_D-4\right)^2}=\sqrt{\left(1-3\right)^2+\left(-2-2\right)^2}\)

\(\Leftrightarrow x_D^2+y_D^2-8y_D+16=20\)

\(\Leftrightarrow x_D^2+y^2_D-8y_D=4\) (1)

\(\left|\overrightarrow{DA}\right|=\left|\overrightarrow{CB}\right|\Rightarrow\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\)

\(\Leftrightarrow\left(1-x_D\right)^2+\left(-2-y_D\right)^2=\left(3-0\right)^2+\left(2-4\right)^2\)

\(\Leftrightarrow1-2x_D+x_D^2+4+4y_D+y_D^2=13\)

\(\Leftrightarrow x_D^2+y_D^2-2x_D+4y_D=8\)(2)

từ (1) và (2) suy ra hpt r giải ra là xong

9 tháng 8 2019

3/ Xét VP trc

Ta có M là TĐ AB\(\Rightarrow\overrightarrow{AM}=\frac{\overrightarrow{AB}}{2}\)

\(\Rightarrow VP=\frac{2}{3}.\frac{1}{2}.\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\)

vì G là trọng tâm\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}\)

Theo quy tắc TĐ:\(\overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}.\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}=VP\)

câu 4 thầy mk chưa dạy nên chưa nghĩ ra cách lm, chắc để tối nghĩ :))