Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Bào 7:
Áp dụng hệ thức lượng trong tam giác vuông có:
\(cos\widehat{BAH}=\dfrac{AH}{AB}=\dfrac{3}{7}\)\(\Rightarrow AH=\dfrac{3AB}{7}\)
\(AB^2+AC^2=BC^2=196\) \(\Leftrightarrow AB^2=196-AC^2\)
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
\(\Leftrightarrow\dfrac{1}{196-AC^2}+\dfrac{1}{AC^2}=\dfrac{1}{\dfrac{9}{49}AB^2}\)
\(\Leftrightarrow\dfrac{1}{196-AC^2}+\dfrac{1}{AC^2}=\dfrac{49}{9\left(196-AC^2\right)}\)
\(\Leftrightarrow\dfrac{9AC^2}{9AC^2\left(196-AC^2\right)}+\dfrac{9\left(196-AC^2\right)}{9AC^2\left(196-AC^2\right)}=\dfrac{49AC^2}{9AC^2\left(196-AC^2\right)}\)
\(\Rightarrow9AC^2+9\left(196-AC^2\right)=49AC^2\)
\(\Leftrightarrow AC^2=36\) =>AC=6
Vậy AC=6 cm
Bài 1:
Gọi vận tốc và thời gian dự định là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(a+3\right)\left(b-2\right)=ab\\\left(a-3\right)\left(b+3\right)=ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2a+3b=6\\3a-3b=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=15\\b=6\end{matrix}\right.\)
Vậy: Chiều dài khúc sông là 90km