K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

3S=3-3^2+3^3-3^4+...-3^{2008}+3^{2009}

4S=3^{2009}+1

\Rightarrow A=4S-1-3^{2009}

=\left(3^{2009}+1\right)-1-3^{2009}

=0

3 tháng 2 2019

\(1-3+3^2-3^3+....-3^{2007}+3^{2008}\)

\(3S=3-3^2+3^3-3^4+...-3^{2008}+3^{2009}\)

\(4S=3^{2009}+1\)

\(\Rightarrow A=4S-1-3^{2009}\)

\(=\left(3^{2009}+1\right)-1-3^{2009}\)

\(=0\)

3 tháng 10 2023

a)

\(3S=3^2+3^3+...+3^{81}\)

\(3S-S=\left(3^2+3^3+...+3^{81}\right)-\left(3+3^2+...+3^{80}\right)\)

\(2S=3^{81}-3\)

\(S=\dfrac{3^{81}-3}{2}\)

b) sai đề?

c)

\(S=\left(3^1+3^2+...+3^4\right)+\left(3^5+3^6+...+3^8\right)+...+\left(3^{77}+3^{78}+3^{79}+3^{80}\right)\)

\(S=3^1\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+3^{77}\left(1+3+9+27\right)\)

\(S=\left(3^1+3^5+...+3^{77}\right)\cdot40\)

Do đó S chia hết cho 40

3 tháng 10 2023

a) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

⇒ 3S = 3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹

⇒ 2S = 3S - S

= (3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹) - (3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰)

= 3⁸¹ - 3

⇒ S = (3⁸¹ - 3)/2

b) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

= (3 + 3² + 3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸ + 3⁹ + 3¹⁰) + ... + 3⁷⁶ + 3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)

= 3(1 + 3 + 3² + 3³ + 3⁴) + 3⁶(1 + 3 + 3² + 3³ + 3⁴) + ... + 3⁷⁶(1 + 3 + 3² + 3³ + 3⁴)

= 3.121 + 3⁶.121 + ... + 3⁷⁶.121

= 121.(3 + 3⁶ + ... + 3⁷⁶)

= 11.11(3 + 3⁶ + ... + 3⁷⁶) ⋮ 11

Vậy S ⋮ 11

c) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

= (3 + 3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷ + 3⁸) + ... + (3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)

= 3(1 + 3 + 3² + 3³) + 3⁵(1 + 3 + 3² + 3³) + ... + 3⁷⁷(1 + 3 + 3² + 3³)

= 3.40 + 3⁵.40 + ... + 3⁷⁷.40

= 40(3 + 3⁵ + ... + 3⁷⁷) ⋮ 40

Vậy S ⋮ 40

a: \(3A=3^2+3^3+3^4+...+3^{2007}\)

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

1 tháng 3 2023

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

1 tháng 3 2023

`1+32+34+36?` Đề nào cho đấy?