K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

E = - ( x2 + 4x + 4 + y2 - 2y + 1 - 5)

= -(x+2)2 - (y-1)2 + 5 \(\ge\)5

vậy Min đề = 5 khi -(x+2)2 = 0 => -x - 2 = 0 => -x = 2 => x = -2 

và -(y-1)2 = 0 => -y + 1 = 0 => -y = -1 => y = 1 

 

17 tháng 8 2015

Iruko t lm nhầm 1 chút thui mak lm j zữ z , khinh ng =.=

\(B=2x^2-6x+7\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)

\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)

\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)

\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)

\(=\left(2x-5-2\right)^2-4\)

\(=\left(2x-7\right)^2-4\ge-4\)

Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)

21 tháng 8 2021

(2x-5)^2 -4(2x-5)=(2x-5)^2 -4(2x-5)+4-4=(2x-7)^2 -4>=-4 suy ra C đạt gtnn là -4

27 tháng 10 2016

Bài này bạn áp dụng phương pháp hệ số bất định hoặc phương pháp xét giá trị riêng

27 tháng 10 2016

Hii.cảm ơn bạn nhé!!!

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

20 tháng 3 2016

Bạn làm nhiều bài tập rồi quen dần với mấy dạng này ,chứ chỉ ra cách nào thì khó lắm 

Thường thì biến đổi về. Dạng bình phương (cũng có những cách khác nhé)

Ví du:tim giá trị nhỏ nhất của:x^2+2x+2=(x+1)^2+1 lớn hơn hoặc bằng 1 với mọi x thuộc R

20 tháng 3 2016

an may tinh la ra

1 tháng 11 2020

\(A=x^4-6x^3+ax^2+bx+1\)

Để A là bình phương của 1 đa thức thì \(A=\left(x^2+cx+1\right)^2\)

\(\Rightarrow A=x^4+c^2x^2+1+2cx^3+2x^2+2cx\)

\(=x^4+2cx^3+\left(2+c^2\right)x^2+2cx+1\)

Đồng nhất hệ số ta có: \(\hept{\begin{cases}2c=-6\\2+c^2=a\\2c=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\2+\left(-3\right)^2=a\\2.\left(-3\right)=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=2+9\\b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=11\\b=-6\end{cases}}\)

Vậy \(a=11\)và \(b=-6\)

1 tháng 11 2020

bạn ơi sao lại là (x^2+cx+1)^2 ạ 

NV
23 tháng 4 2022

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

24 tháng 4 2022

-Em cảm ơn thầy nhiều ạ!