Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN của đa thức của E = -x^2 - 4x - y^2 + 2y là:
Mình đang cần gấp, ai giúp được mình tick đúng liền
E = - ( x2 + 4x + 4 + y2 - 2y + 1 - 5)
= -(x+2)2 - (y-1)2 + 5 \(\ge\)5
vậy Min đề = 5 khi -(x+2)2 = 0 => -x - 2 = 0 => -x = 2 => x = -2
và -(y-1)2 = 0 => -y + 1 = 0 => -y = -1 => y = 1
\(B=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}+7\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Vậy \(MinB=\frac{5}{2}\Leftrightarrow x=\frac{3}{2}\)
\(C=\left(2x-5\right)^2-4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x-5-4\right)=2x-5\)
\(=[\left(2x-5\right)^2-4\left(2x-5\right)+4]-4\)
\(=\left(2x-5-2\right)^2-4\)
\(=\left(2x-7\right)^2-4\ge-4\)
Vậy \(MinC=-4\Leftrightarrow x=\frac{7}{2}\)
Bài này bạn áp dụng phương pháp hệ số bất định hoặc phương pháp xét giá trị riêng
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
Bạn làm nhiều bài tập rồi quen dần với mấy dạng này ,chứ chỉ ra cách nào thì khó lắm
Thường thì biến đổi về. Dạng bình phương (cũng có những cách khác nhé)
Ví du:tim giá trị nhỏ nhất của:x^2+2x+2=(x+1)^2+1 lớn hơn hoặc bằng 1 với mọi x thuộc R
\(A=x^4-6x^3+ax^2+bx+1\)
Để A là bình phương của 1 đa thức thì \(A=\left(x^2+cx+1\right)^2\)
\(\Rightarrow A=x^4+c^2x^2+1+2cx^3+2x^2+2cx\)
\(=x^4+2cx^3+\left(2+c^2\right)x^2+2cx+1\)
Đồng nhất hệ số ta có: \(\hept{\begin{cases}2c=-6\\2+c^2=a\\2c=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\2+\left(-3\right)^2=a\\2.\left(-3\right)=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=2+9\\b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=11\\b=-6\end{cases}}\)
Vậy \(a=11\)và \(b=-6\)
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)