Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(2\frac{1}{3}+3,5\right):\left(-4\frac{1}{6}+3\frac{1}{7}\right)+7,5\)
\(=\left(\frac{7}{3}+\frac{7}{2}\right):\left(\frac{-25}{6}+\frac{22}{7}\right)+\frac{15}{2}\)
\(=\left(\frac{14}{6}+\frac{21}{6}\right):\left(\frac{-175}{42}+\frac{132}{42}\right)+\frac{15}{2}\)
\(=\frac{14+21}{6}:\frac{-175+132}{42}+\frac{15}{2}\)
\(=\frac{35}{6}:\frac{-43}{42}+\frac{15}{2}=\frac{35}{6}.\frac{-42}{43}+\frac{15}{2}\)
\(=\frac{-245}{43}+\frac{15}{2}=\frac{-490}{86}+\frac{645}{86}\)
\(=\frac{-490+645}{86}=\frac{155}{86}\)
\(A=\left(2\frac{1}{3}+3,5\right):\left(-4\frac{1}{6}+3\frac{1}{7}\right)+7,5\)
\(A=\left(\frac{7}{3}+3,5\right):\left(\frac{-25}{6}+\frac{22}{7}\right)+7,5\)
\(A=\frac{35}{6}:\frac{-43}{42}+7,5\)
\(A=\frac{-245}{43}+7,5\)
\(A=\frac{155}{86}\)
a: \(=\dfrac{5}{3}\left(-16-\dfrac{2}{7}+28+\dfrac{2}{7}\right)=\dfrac{5}{3}\cdot12=20\)
b: \(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17=\dfrac{1}{2}\cdot\dfrac{6}{5}-17=\dfrac{3}{5}-17=-\dfrac{82}{5}\)
c: \(=-\left(\dfrac{1}{3}\right)^{50}\cdot3^{50}-\dfrac{2}{3}\cdot\dfrac{1}{4}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
e: \(=5.7\left(-6.5-3.5\right)=-5.7\cdot10=-57\)
1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)
\(M=\left(2\frac{1}{3}+3,5\right):\left(-4\frac{1}{6}+3\frac{1}{7}\right)+7,5\)
\(M=\left(\frac{7}{3}+\frac{7}{2}\right):\left(-\frac{25}{6}+\frac{22}{7}\right)+\frac{15}{2}\)
\(M=\frac{35}{6}:\left(-\frac{43}{42}\right)+\frac{15}{2}\)
\(M=\frac{35}{6}\cdot\left(-\frac{42}{43}\right)+\frac{15}{2}\)
\(M=\frac{35}{1}\cdot\left(-\frac{7}{43}\right)+\frac{15}{2}=-\frac{245}{43}+\frac{15}{2}=\frac{155}{86}\)
\(m=\left(\frac{7}{3}+3,5\right):\left(-\frac{25}{6}+\frac{22}{7}\right)+7,5\)
\(m=\frac{35}{6}:-\frac{25}{6}+7,5\)
\(m=\frac{35}{6}.-\frac{6}{25}+7,5\)
\(m=-\frac{7}{5}+7,5\)
\(m=\frac{61}{10}\)