K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

\(\frac{2017}{2300}\)lớn hơn\(\frac{2016}{3200}\)
chúc bạn học tốt !

27 tháng 7 2017

\(\frac{2017}{2300}\)<\(\frac{2016}{2300}\)

27 tháng 7 2017

\(\frac{2017}{2300}\)có mẫu số bé hơn \(\frac{2016}{3200}\)

\(=>\frac{2017}{2300}>\frac{2016}{3200}\)

27 tháng 7 2017

gu64efik^eUà%dco

17 tháng 6 2019

\(\frac{2016}{2017}\)\(\frac{2017}{2018}\)\(\frac{2018}{2016}\)< 3 

17 tháng 6 2019

2016/2017 + 2017/2018 + 2018/2016 > 3

Hok tốt

17 tháng 4 2017

Ta có: 

\(B=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)

vì: \(\frac{2015}{2016}>\frac{2015}{2016+2017}\)VÀ \(\frac{2016}{2017}>\frac{2016}{2016+2017}\)

\(\Rightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)

\(\Rightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)

\(\Rightarrow A>B\)

Vậy: \(A>B\)

17 tháng 4 2017

\(A>B\)

29 tháng 7 2018

vì  2016/ 2017<1 ,

2017/ 2018 <1

2018 /2019<1

=>  2016/ 2017 + 2017/ 2018 + 2018 / 2019<1+1+1=3

vậy A = 2016/ 2017 + 2017/ 2018 + 2018 / 2019 < 3

Hai bài này bạn tính ra là xong mà

Cần gì phải hỏi

Dễ mà

13 tháng 8 2017

\(A< 4\)

\(B< 3\)

là đáp án đúng

Ta có :\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}\)\(\frac{2016}{2016}=1\)

mà : 1 < 3

vậy:\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}< 3\)

26 tháng 6 2017

Giải: Ta có:

\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)

\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)

\(\frac{2018}{2016}=\frac{2016}{2016}+\frac{2}{2016}=1+\frac{2}{2016}\)

\(\Rightarrow3+\frac{-1}{2017}+\frac{-1}{2018}+\frac{2}{2016}=3+\frac{2}{2016}>3\)
 

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

10 tháng 7 2017

bang nhau

10 tháng 7 2017

\(\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)

\(\frac{2015}{2016}>\frac{2015}{2016+2017}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017}\)

\(A>B;\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)