Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: ab+ba =10a+b+10b+a
=11a+11b
Vì 11a chia hết cho 11; 11b chia hết cho 11 nên 11a+11b chia hết cho 11
=> ab+ba chia hết cho 11
c) Ta có: aaabbb= aaax1000+bbb
=111ax1000+111b
=111(ax1000+b)
Vì 111 chia hết cho 37 nên 111(ax1000+b) chia hết cho 37
=> aaabbb chia hết cho 37
a, ta có: abcdeg = ab x 10000+ cd x 100 + eg= ab x 9999 x ab + cd x 99 x cd + eg = ab x 9999 + cd x 99 + ( ab+cd+eg)
vì 9999 chia hết cho 11 => ab x 9999 chia hết cho 11
vì 99 chia hết cho 11 => cd x 99 chia hết cho 11
mà ab+cd+eg chia hết cho 11 => ab x 9999 x ab+ cd x 99 x cd +eg chia hết cho 11
=> abcdeg chi hết cho 11 ( đpcm )
b,ta có: 1000 chia hết cho 8 => 103 chia hết cho 8
=> 1025 x 103 chi hết cho 8
và 8 chia hết cho 8
=> 1028+8 chia hết cho 8 (1)
Lại có: 1028+8= 10......08 ( 27 chữ số 0 )
=> 1028+8 chia hết cho 9 (2)
Vì ƯCLN(8;9)=1 (3)
Từ (1), (2) và (3)=>1028+8 chia hết cho 72
~~~Chúc bạn học tốt~~~
Vì chia hết cho cả 2 và 5 nên số đó có tận cùng là 0 nên ở ý a, số đó là 370
b, Để chia hết cho 5 thì phải có tận cùng là 0 hoặc 5, nhưng để chia hết cho cả 3 thì phải có tổng các chữ số chia hết cho 3. Như vậy số 28.. phải có tận cùng là 5 tức là số 285
a) 37.. chia hết cho cả 2 và 5
Ta thấy số tận cùng là 0;2;4;6;8 chia hết cho 2
số tận cùng là 0;5 chia hết cho 5
để 37.. chia hết cho 2 và 5 thì số đó phải tận cùng bằng 0
Vậy số đó là 370
b) 28.. chia hết cho 3 và 5
Để 28.. chia hết cho 5 thì số đó phải tận cùng là 0 và 5
TH1: Nếu số đó là 280
- 280 chia hết cho 5
- 280 k chia hết cho 3 (vì 2 + 8 +0 = 10 k chia hết cho 3)
=> k thỏa mãn
TH2: Nếu số đó là 285
- 285 chia hết cho 5
- 285 chia hết cho 3 (vì 2 + 8 +5 = 15 chia hết cho 3)
=> Thỏa mãn
Vậy số đó là 285
HOK TOT
Bài 1
\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)
Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)
\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)
hay
\(\left(2^{1995}-1\right)⋮31\)
Bài 2
Làm tương tự
\(\left(n^2-n-1\right)⋮n-1\)
\(\Rightarrow n\left(n-1\right)-1⋮n-1\)
\(\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(\pm1\right)\)
\(Khi\)\(n-1=1\Rightarrow n=2\)
\(Khi\)\(n-1=-1\Rightarrow n=0\)
n.(n-1) - 1 chia hết cho n-1
vì n. (n-1) chia hết cho n-1
suy ra 1 chia hết cho n-1
n-1 thuộc Ư(1)
n-1 thuộc {1; -1}
n thuộc {2; 0}
11.13+23.25+50.60
11.2.13.2+23.2.25.2+60.50.4
1
2.2+2.2+4
1
4+4+4
1
12
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
Ta có: aaaaaa = 111111a = 3003.37.a
=>aaaaaa chia hết cho 37
ta có aaaaaa = aaa000 + aaa
aaa = a00+ a0+ a
aaa = 100a +10a + a
aaa = 111a
mà 111 chia hết cho 37 (bằng 3)
=> 111a chia hết cho 37 ( với a bất kỳ)
=> aaa chia hết cho 37 (1)
mà aaa000 = aaa * 1000
=> aaa000 chia hết cho 37 (2)
(1)(2) =>ta có aaaaaa = aaa000 + aaa chắc chắn chia hết cho 37
đpcm